Endomorphisms of upper triangular matrix rings

被引:1
|
作者
Vladeva, Dimitrinka [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str Block 8, Sofia 1113, Sofia, Bulgaria
关键词
Endomorphism; Idempotent; Triangular matrices over ring; (0,1)-matrix; DERIVATIONS; AUTOMORPHISMS; MAPS;
D O I
10.1007/s13366-023-00688-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the class of endomorphisms alpha of a ring UT M-n(R) of upper triangular n x n matrices such that alpha(eij) is a (0,1)-matrix for any matrix unit e(ij). We use the left and right semicentral idempotents defined and studied by Birkenmeier. We study the idempotent semigroup (E-n(R), .) of endomorphisms of UT M-n(R). An endomorphism alpha is called regular if alpha(e(ii)) = e(ij )or alpha(e(ij)) = 0 for all i = 1, ... , n. In the main results we prove that the class of regular (0,1)-endomorphisms is E-n(R), that the semigroup (En(R), .) consists of all idempotent (0,1)-endomorphisms and all other (0,1)-endomorphisms are roots of idempotents.
引用
收藏
页码:291 / 306
页数:16
相关论文
共 50 条
  • [31] ON SKEW TRIANGULAR MATRIX RINGS
    Nasr-Isfahani, A. R.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) : 4461 - 4469
  • [32] On Skew Triangular Matrix Rings
    Habibi, M.
    Moussavi, A.
    Alhevaz, A.
    ALGEBRA COLLOQUIUM, 2015, 22 (02) : 271 - 280
  • [33] On ideals of triangular matrix rings
    Johan Meyer
    Jenő Szigeti
    Leon van Wyk
    Periodica Mathematica Hungarica, 2009, 59 : 109 - 115
  • [34] ON IDEALS OF TRIANGULAR MATRIX RINGS
    Meyer, Johan
    Szigeti, Jeno
    van Wyk, Leon
    PERIODICA MATHEMATICA HUNGARICA, 2009, 59 (01) : 109 - 115
  • [35] DIFFERENTIAL POLYNOMIAL RINGS OF TRIANGULAR MATRIX RINGS
    Ghahramani, H.
    Moussavi, A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2008, 34 (02) : 71 - 96
  • [36] Decomposition of Lie automorphisms of upper triangular matrix algebra over commutative rings
    Wang, Xing Tao
    You, Hong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (2-3) : 466 - 474
  • [37] On strongly clean matrix and triangular matrix rings
    Chen, Jianlong
    Yang, Xiande
    Zhou, Yiqiang
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (10) : 3659 - 3674
  • [38] QUASIPOLAR TRIANGULAR MATRIX RINGS OVER LOCAL RINGS
    Cui, Jian
    Chen, Jianlong
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (02) : 784 - 794
  • [39] Skew polynomial rings of formal triangular matrix rings
    Ghahramani, Hoger
    JOURNAL OF ALGEBRA, 2012, 349 (01) : 201 - 216
  • [40] Jordan homomorphisms of upper triangular matrix rings (vol 439, pg 4063, 2013)
    Du, Yiqiu
    Wang, Yao
    Wang, Yu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 452 : 345 - 350