Endomorphisms of upper triangular matrix rings

被引:1
|
作者
Vladeva, Dimitrinka [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str Block 8, Sofia 1113, Sofia, Bulgaria
关键词
Endomorphism; Idempotent; Triangular matrices over ring; (0,1)-matrix; DERIVATIONS; AUTOMORPHISMS; MAPS;
D O I
10.1007/s13366-023-00688-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the class of endomorphisms alpha of a ring UT M-n(R) of upper triangular n x n matrices such that alpha(eij) is a (0,1)-matrix for any matrix unit e(ij). We use the left and right semicentral idempotents defined and studied by Birkenmeier. We study the idempotent semigroup (E-n(R), .) of endomorphisms of UT M-n(R). An endomorphism alpha is called regular if alpha(e(ii)) = e(ij )or alpha(e(ij)) = 0 for all i = 1, ... , n. In the main results we prove that the class of regular (0,1)-endomorphisms is E-n(R), that the semigroup (En(R), .) consists of all idempotent (0,1)-endomorphisms and all other (0,1)-endomorphisms are roots of idempotents.
引用
收藏
页码:291 / 306
页数:16
相关论文
共 50 条
  • [41] Decomposition of Jordan automorphisms of strictly upper triangular matrix algebra over commutative rings
    Wang, Xing Tao
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (04) : 1133 - 1140
  • [42] Universal localization of triangular matrix rings
    Sheiham, Desmond
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (12) : 3465 - 3474
  • [43] Derived Equivalences for Triangular Matrix Rings
    Hiroki Abe
    Mitsuo Hoshino
    Algebras and Representation Theory, 2010, 13 : 61 - 67
  • [44] Derived Equivalences for Triangular Matrix Rings
    Abe, Hiroki
    Hoshino, Mitsuo
    ALGEBRAS AND REPRESENTATION THEORY, 2010, 13 (01) : 61 - 67
  • [45] An embedding theorem on triangular matrix rings
    Tang, Gaohua
    Zhou, Yiqiang
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (05): : 882 - 890
  • [46] On Jordan Biderivations of Triangular Matrix Rings
    Driss AIAT HADJ AHMED
    JournalofMathematicalResearchwithApplications, 2016, 36 (02) : 162 - 170
  • [47] On reduced rank of triangular matrix rings
    Bailey, Abigail C.
    Beachy, John A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (04)
  • [48] REPRESENTATION TYPE OF TRIANGULAR MATRIX RINGS
    AUSLANDER, M
    REITEN, I
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 12 (47): : 371 - 382
  • [49] Study of formal triangular matrix rings
    Haghany, A
    Varadarajan, K
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (11) : 5507 - 5525
  • [50] ON SKEW GENERALIZED TRIANGULAR MATRIX RINGS
    Habibi, M.
    Paykan, K.
    JOURNAL OF ALGEBRAIC SYSTEMS, 2025, 13 (01):