The role of semicentral idempotents in triangular matrix rings

被引:0
|
作者
Vladeva, D. I. [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Dept Algebra & Log, Sofia, Bulgaria
关键词
Idempotents; matrix rings; triangular matrices; PRODUCTS;
D O I
10.1080/00927872.2024.2398629
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The circle composition e1 degrees e2=e1+e2-e1e2 is well-known from the seminal book of Jacobson. A part of our motivation aims to find non-orthogonal idempotents e1 and e2 such that e1 degrees e2 is an idempotent. Such idempotents are the products rl where r is a right semicentral and l is a left semicentral idempotent of the ring of upper triangular matrices over a ring. We prove that in the semigroup of upper triangular matrices over ring with only trivial idempotents every idempotent matrix can be represented as a circle composition of products of the type rl.
引用
收藏
页码:1024 / 1038
页数:15
相关论文
共 50 条
  • [31] On Jordan Biderivations of Triangular Matrix Rings
    Driss AIAT HADJ AHMED
    JournalofMathematicalResearchwithApplications, 2016, 36 (02) : 162 - 170
  • [32] On reduced rank of triangular matrix rings
    Bailey, Abigail C.
    Beachy, John A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (04)
  • [33] REPRESENTATION TYPE OF TRIANGULAR MATRIX RINGS
    AUSLANDER, M
    REITEN, I
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 12 (47): : 371 - 382
  • [34] Study of formal triangular matrix rings
    Haghany, A
    Varadarajan, K
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (11) : 5507 - 5525
  • [35] ON SKEW GENERALIZED TRIANGULAR MATRIX RINGS
    Habibi, M.
    Paykan, K.
    JOURNAL OF ALGEBRAIC SYSTEMS, 2025, 13 (01):
  • [36] On biderivations of upper triangular matrix rings
    Ghosseiri, Nader M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) : 250 - 260
  • [37] TRIANGULAR MATRIX REPRESENTATIONS OF SEMIPRIMARY RINGS
    Birkenmeier, Gary F.
    Kim, Jin Yong
    Park, Jae Keol
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2002, 1 (02) : 123 - 131
  • [38] Idempotents of 2 x 2 matrix rings over rings of formal power series
    Drensky, Vesselin
    LINEAR & MULTILINEAR ALGEBRA, 2021,
  • [39] Strongly clean triangular matrix rings over local rings
    Borooah, Gautam
    Diesl, Alexander J.
    Dorsey, Thomas J.
    JOURNAL OF ALGEBRA, 2007, 312 (02) : 773 - 797
  • [40] RINGS IN WHICH EVERY SEMICENTRAL IDEMPOTENT IS CENTRAL
    Saad, Muhammad
    KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (04): : 405 - 417