Generative diffusion models: A survey of current theoretical developments

被引:2
|
作者
Yegin, Melike Nur [1 ]
Amasyali, Mehmet Fatih [1 ]
机构
[1] Yildiz Tech Univ, Comp Engn Dept, Istanbul, Turkiye
关键词
Generative diffusion models; Score-based models; Denoising diffusion probabilistic models; Noise-conditional score networks; Image generation; DENSITY-ESTIMATION;
D O I
10.1016/j.neucom.2024.128373
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative diffusion models showed high success in many fields with a powerful theoretical background. They convert the data distribution to noise and remove the noise back to obtain a similar distribution. Many existing reviews focused on the specific application areas without concentrating on the developments about the algorithm. Unlike them we investigated the theoretical developments of the generative diffusion models. These approaches mainly divide into two: training-based and training-free. Awakening to this allowed us a clear and understandable categorization for the researchers who will make new developments in the future.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Survey of Variational Inferences in Probabilistic Generative Models
    Chen Y.
    Yang J.
    Shi Y.
    Wang Y.
    Zhao T.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (03): : 617 - 632
  • [32] On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models
    Deja, Kamil
    Kuzina, Anna
    Trzcinski, Tomasz
    Tomczak, Jakub M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [33] Diffusion Models in Vision: A Survey
    Croitoru, Florinel-Alin
    Hondru, Vlad
    Ionescu, Radu Tudor
    Shah, Mubarak
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 10850 - 10869
  • [34] A Survey on Video Diffusion Models
    Xing, Zhen
    Feng, Qijun
    Chen, Haoran
    Dai, Qi
    Hu, Hang
    Xu, Hang
    Wu, Zuxuan
    Jiang, Yu-gang
    ACM COMPUTING SURVEYS, 2025, 57 (02)
  • [35] Lightweight diffusion models: a survey
    Song, Wei
    Ma, Wen
    Zhang, Ming
    Zhang, Yanghao
    Zhao, Xiaobing
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (06)
  • [36] Denoising diffusion probabilistic models for generative alloy design☆
    Fernandez-Zelaia, Patxi
    Thapliyal, Saket
    Kannan, Rangasayee
    Nandwana, Peeyush
    Yamamoto, Yukinori
    Nycz, Andrzej
    Paquit, Vincent
    Kirka, Michael M.
    ADDITIVE MANUFACTURING, 2024, 94
  • [37] Generative emulation of weather forecast ensembles with diffusion models
    Li, Lizao
    Carver, Robert
    Lopez-Gomez, Ignacio
    Sha, Fei
    Anderson, John
    SCIENCE ADVANCES, 2024, 10 (13):
  • [38] Accelerated motion correction with deep generative diffusion models
    Levac, Brett
    Kumar, Sidharth
    Jalal, Ajil
    Tamir, Jonathan I.
    MAGNETIC RESONANCE IN MEDICINE, 2024, 92 (02) : 853 - 868
  • [39] MONTRAGE: Monitoring Training for Attribution of Generative Diffusion Models
    Brokman, Jonathan
    Hofman, Omer
    Vainshtein, Roman
    Giloni, Amit
    Shimizu, Toshiya
    Rachmill, Oren
    Zolff, Alon
    Shabtar, Asaf
    Unno, Yuki
    Kojima, Hisashi
    COMPUTER VISION - ECCV 2024, PT LXXV, 2025, 15133 : 1 - 17
  • [40] Quantum-Noise-Driven Generative Diffusion Models
    Parigi, Marco
    Martina, Stefano
    Caruso, Filippo
    ADVANCED QUANTUM TECHNOLOGIES, 2024,