Generative diffusion models: A survey of current theoretical developments

被引:2
|
作者
Yegin, Melike Nur [1 ]
Amasyali, Mehmet Fatih [1 ]
机构
[1] Yildiz Tech Univ, Comp Engn Dept, Istanbul, Turkiye
关键词
Generative diffusion models; Score-based models; Denoising diffusion probabilistic models; Noise-conditional score networks; Image generation; DENSITY-ESTIMATION;
D O I
10.1016/j.neucom.2024.128373
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative diffusion models showed high success in many fields with a powerful theoretical background. They convert the data distribution to noise and remove the noise back to obtain a similar distribution. Many existing reviews focused on the specific application areas without concentrating on the developments about the algorithm. Unlike them we investigated the theoretical developments of the generative diffusion models. These approaches mainly divide into two: training-based and training-free. Awakening to this allowed us a clear and understandable categorization for the researchers who will make new developments in the future.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Spontaneous Symmetry Breaking in Generative Diffusion Models
    Raya, Gabriel
    Ambrogioni, Luca
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [22] Opportunities and challenges of diffusion models for generative AI
    Chen, Minshuo
    Mei, Song
    Fan, Jianqing
    Wang, Mengdi
    NATIONAL SCIENCE REVIEW, 2024, 11 (12)
  • [23] Opportunities and challenges of diffusion models for generative AI
    Minshuo Chen
    Song Mei
    Jianqing Fan
    Mengdi Wang
    National Science Review, 2024, 11 (12) : 254 - 276
  • [24] Spontaneous symmetry breaking in generative diffusion models
    Raya, Gabriel
    Ambrogioni, Luca
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (10):
  • [25] Synthetic Lagrangian turbulence by generative diffusion models
    Li, T.
    Biferale, L.
    Bonaccorso, F.
    Scarpolini, M. A.
    Buzzicotti, M.
    NATURE MACHINE INTELLIGENCE, 2024, 6 (04) : 393 - 403
  • [26] Generative Diffusion Models on Graphs: Methods and Applications
    Liu, Chengyi
    Fan, Wenqi
    Liu, Yunqing
    Li, Jiatong
    Li, Hang
    Liu, Hui
    Tang, Jiliang
    Li, Qing
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 6702 - 6711
  • [27] DiffusionBERT: Improving Generative Masked Language Models with Diffusion Models
    He, Zhengfu
    Sun, Tianxiang
    Tang, Qiong
    Wang, Kuanning
    Huang, Xuanjing
    Qiu, Xipeng
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 4521 - 4534
  • [28] Fuel cells: a survey of current developments
    Cropper, MAJ
    Geiger, S
    Jollie, DM
    JOURNAL OF POWER SOURCES, 2004, 131 (1-2) : 57 - 61
  • [29] Survey of current theoretical schemes
    STOPPING OF HEAVY IONS: A THERORETICAL APPROACH, 2004, 204 : 77 - 83
  • [30] Deep Generative Models for Synthetic Data: A Survey
    Eigenschink, Peter
    Reutterer, Thomas
    Vamosi, Stefan
    Vamosi, Ralf
    Sun, Chang
    Kalcher, Klaudius
    IEEE ACCESS, 2023, 11 : 47304 - 47320