Generative diffusion models: A survey of current theoretical developments

被引:2
|
作者
Yegin, Melike Nur [1 ]
Amasyali, Mehmet Fatih [1 ]
机构
[1] Yildiz Tech Univ, Comp Engn Dept, Istanbul, Turkiye
关键词
Generative diffusion models; Score-based models; Denoising diffusion probabilistic models; Noise-conditional score networks; Image generation; DENSITY-ESTIMATION;
D O I
10.1016/j.neucom.2024.128373
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative diffusion models showed high success in many fields with a powerful theoretical background. They convert the data distribution to noise and remove the noise back to obtain a similar distribution. Many existing reviews focused on the specific application areas without concentrating on the developments about the algorithm. Unlike them we investigated the theoretical developments of the generative diffusion models. These approaches mainly divide into two: training-based and training-free. Awakening to this allowed us a clear and understandable categorization for the researchers who will make new developments in the future.
引用
收藏
页数:21
相关论文
共 50 条
  • [11] Nonequilbrium physics of generative diffusion models
    Yu, Zhendong
    Huang, Haiping
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [12] Portrait Reification with Generative Diffusion Models
    Asperti, Andrea
    Colasuonno, Gabriele
    Guerra, Antonio
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [13] Speech Enhancement with Generative Diffusion Models
    Girfanov, O. V.
    Shishkin, A. G.
    AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS, 2023, 57 (05) : 249 - 257
  • [14] Precipitation nowcasting with generative diffusion models
    Asperti, Andrea
    Merizzi, Fabio
    Paparella, Alberto
    Pedrazzi, Giorgio
    Angelinelli, Matteo
    Colamonaco, Stefano
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [15] A Complete Recipe for Diffusion Generative Models
    Pandey, Kushagra
    Mandt, Stephan
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 4238 - 4249
  • [16] A survey of multimodal deep generative models
    Suzuki, Masahiro
    Matsuo, Yutaka
    Advanced Robotics, 2022, 36 (5-6): : 261 - 278
  • [17] A survey of multimodal deep generative models
    Suzuki, Masahiro
    Matsuo, Yutaka
    ADVANCED ROBOTICS, 2022, 36 (5-6) : 261 - 278
  • [19] PROLOG THEORETICAL BASES AND CURRENT DEVELOPMENTS
    COLMERAUER, A
    KANOUI, H
    VANCANEGHEM, M
    TSI-TECHNIQUE ET SCIENCE INFORMATIQUES, 1983, 2 (04): : 271 - 311
  • [20] AI-driven antibody design with generative diffusion models: current insights and future directions
    He, Xin-heng
    Li, Jun-rui
    Xu, James
    Shan, Hong
    Shen, Shi-yi
    Gao, Si-han
    Xu, H. Eric
    ACTA PHARMACOLOGICA SINICA, 2025, 46 (03) : 565 - 574