Sensing perceived urban stress using space syntactical and urban building density data: A machine learning-based approach

被引:2
|
作者
Le, Quang Hoai [1 ]
Kwon, Nahyun [2 ]
Nguyen, The Hung [1 ]
Kim, Byeol [3 ]
Ahn, Yonghan [1 ]
机构
[1] Hanyang Univ ERICA, Dept Smart City Engn, Ansan 15588, South Korea
[2] Hanyang Univ ERICA, Dept Architectural Engn, Ansan 15588, South Korea
[3] Hanyang Univ ERICA, Ctr AI Technol Construct, Ansan 15588, South Korea
关键词
Machine learning; Built environment; Perceived urban stress; Urban building density; Space syntax; Street view image; BUILT ENVIRONMENT; SOCIAL STRESS; INDEX; ASSOCIATIONS; PERCEPTIONS; QUALITY; HEALTH;
D O I
10.1016/j.buildenv.2024.112054
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Human well-being is an essential criterion in achieving smart and sustainable cities. Given the significant influence of stress on individuals physical and mental health, various approaches have been proposed to examine the subjective experience of stress induced by the urban built environment and its effects on human well-being. Nevertheless, conducting assessments on a large scale continues to be a significant obstacle, particularly in today's context of rapid urbanization. This study utilized advancements in Machine Learning (ML) to develop a method for measuring perceived stress by analyzing urban building density, space syntactic characteristics, and visual features of the built environment. Through the utilization of ML models, a predictive approach has been developed that can capture the perceived stress levels of urban dwellers. The results are verified with public survey data, with R-2 reaching 0.698 obtained by evaluating the mean stress scores of 25 districts in Seoul city. The findings demonstrate that the proposed approach can effectively measure perceived stress, enabling urban planners to analyze the spatial pattern of perceived stress and the influence of the built environment on this perception. This work expands current approaches, which concentrate solely on parks, open spaces, or streetscapes, by developing a more comprehensive predictive model for measuring perceived stress levels in various urban areas.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A Machine Learning Approach for Estimating the Trophic State of Urban Waters Based on Remote Sensing and Environmental Factors
    Zhu, Shijie
    Mao, Jingqiao
    REMOTE SENSING, 2021, 13 (13)
  • [42] Deep Learning-based Approach on Risk Estimation of Urban Traffic Accidents
    Jin, Zhixiong
    Noh, Byeongjoon
    Cho, Haechan
    Yeo, Hwasoo
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 1446 - 1451
  • [43] Machine learning-based analysis and prediction of meteorological factors and urban heatstroke diseases
    Xu, Hui
    Guo, Shufang
    Shi, Xiaojun
    Wu, Yanzhen
    Pan, Junyi
    Gao, Han
    Tang, Yan
    Han, Aiqing
    FRONTIERS IN PUBLIC HEALTH, 2024, 12
  • [44] Computer Vision and Machine Learning-Based Predictive Analysis for Urban Agricultural Systems
    Kempelis, Arturs
    Polaka, Inese
    Romanovs, Andrejs
    Patlins, Antons
    FUTURE INTERNET, 2024, 16 (02)
  • [45] Machine learning-based prediction of tree crown development in competitive urban environments
    Yazdi, Hadi
    Moser-Reischl, Astrid
    Roetzer, Thomas
    Petzold, Frank
    Ludwig, Ferdinand
    URBAN FORESTRY & URBAN GREENING, 2024, 101
  • [46] Machine Learning-based Prediction and Analysis of Air and Noise Pollution in Urban Environments
    Vijayalakshmi, A.
    Abishek, Ebenezer B.
    Rubi, Jaya
    Dhivya, Josephin Arockia
    Kavidoss, K.
    Ram, Aakas A. S.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 1080 - 1085
  • [47] A novel machine learning-based framework to extract the urban flood susceptible regions
    Tang, Xianzhe
    Tian, Juwei
    Huang, Xi
    Shu, Yuqin
    Liu, Zhenhua
    Long, Shaoqiu
    Xue, Weixing
    Liu, Luo
    Lin, Xueming
    Liu, Wei
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 132
  • [48] A Portfolio of Machine Learning-based GNSS LOS/NLOS Classification in Urban Environments
    Zhu, Ni
    Belemoualem, Chaimae
    Renaudin, Valerie
    2023 IEEE SENSORS, 2023,
  • [49] Machine learning-based surrogate models for fast impact assessment of a new building on urban local microclimate at design stage
    Zhao, Zeming
    Li, Hangxin
    Wang, Shengwei
    BUILDING AND ENVIRONMENT, 2024, 266
  • [50] Improving CNV Detection Performance in Microarray Data Using a Machine Learning-Based Approach
    Goh, Chul Jun
    Kwon, Hyuk-Jung
    Kim, Yoonhee
    Jung, Seunghee
    Park, Jiwoo
    Lee, Isaac Kise
    Park, Bo-Ram
    Kim, Myeong-Ji
    Kim, Min-Jeong
    Lee, Min-Seob
    DIAGNOSTICS, 2024, 14 (01)