Machine learning-based surrogate models for fast impact assessment of a new building on urban local microclimate at design stage

被引:4
|
作者
Zhao, Zeming [1 ]
Li, Hangxin [1 ,2 ]
Wang, Shengwei [1 ,3 ]
机构
[1] Hong Kong Polytech Univ, Dept Bldg Environm & Energy Engn, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen, Peoples R China
[3] Hong Kong Polytech Univ, Res Inst Smart Energy, Hong Kong, Peoples R China
关键词
Surrogate model; Machine learning; Local microclimate; Microclimate prediction; Building design; ASPECT RATIO; PERFORMANCE; PREDICTION; CFD; VENTILATION; CLIMATE;
D O I
10.1016/j.buildenv.2024.112142
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The rapid urbanization introduces changes in the local urban microclimate. Many efforts have been paid on the impact assessment of building design on local microclimate. However, there is still a lack of efficient and accurate prediction method for assessing the impacts on local microclimate when making the design of individual buildings. Two complementary machine learning-based surrogate models are proposed, including an SVR-based local air temperature model and a LightGBM-based local wind velocity model. They are identified by evaluating and comparing eight alternative machine learning models, four for each model development. 200 sets of CFD simulation data corresponding to different building designs are used for the model training and validation. The results show that the developed surrogate models can dramatically reduce computation time (from over 5 h to less than a second for a single prediction) while keeping the same order of accuracy of CFD simulations for local microclimate prediction of individual buildings. It therefore facilitates the fast, comprehensive and accurate prediction of the impacts on the local microclimate at the early design stage of new construction and renovation of individual buildings, for designers to deliver preferred local microclimate and/or avoid unacceptable microclimate changes.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Evaluating a deep learning-based surrogate model for predicting wind distribution in urban microclimate design
    Wang, Houzhi
    Ma, Wei
    Niu, Jianlei
    You, Ruoyu
    BUILDING AND ENVIRONMENT, 2025, 269
  • [2] Machine Learning-Based Fast Seismic Risk Assessment of Building Structures
    Tang, Qi
    Dang, Ji
    Cui, Yao
    Wang, Xin
    Jia, Jinqing
    JOURNAL OF EARTHQUAKE ENGINEERING, 2022, 26 (15) : 8041 - 8062
  • [3] A machine learning-based comparative analysis of surrogate models for design optimisation in computational fluid dynamics
    Mukhtar, Azfarizal
    Yasir, Ahmad Shah Hizam Md
    Nasir, Mohamad Fariz Mohamed
    HELIYON, 2023, 9 (08)
  • [4] Review of machine learning-based surrogate models of groundwater contaminant modeling
    Luo, Jiannan
    Ma, Xi
    Ji, Yefei
    Li, Xueli
    Song, Zhuo
    Lu, Wenxi
    ENVIRONMENTAL RESEARCH, 2023, 238
  • [5] A machine learning-based surrogate model to approximate optimal building retrofit solutions
    Thrampoulidis, Emmanouil
    Mavromatidis, Georgios
    Lucchi, Aurelien
    Orehounig, Kristina
    APPLIED ENERGY, 2021, 281
  • [6] Machine learning-based surrogate resilience modeling for preliminary seismic design
    Tang, Qi
    Cui, Yao
    Jia, Jinqing
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [7] A Fast Design and Optimization Method Based on Surrogate Model and Machine Learning
    Li, Wen Xi
    Li, Ying
    Yan, Ran
    Luo, Yong
    IVEC 2021: 2021 22ND INTERNATIONAL VACUUM ELECTRONICS CONFERENCE, 2021,
  • [8] Weather clustering for machine learning-based hourly building energy prediction models at design phase
    Zhan, Dongxue
    Qin, Shaoxiang
    Wang, Liangzhu
    Hassan, Ibrahim Galal
    ENERGY AND BUILDINGS, 2025, 329
  • [9] Application of machine learning-based surrogate models for urban flood depth modeling in Ho Chi Minh City, Vietnam
    Dang, Thanh Quang
    Tran, Ba Hoang
    Le, Quyen Ngoc
    Dang, Thanh Duc
    Tanim, Ahad Hasan
    Pham, Quoc Bao
    Bui, Van Hieu
    Mai, Son T.
    Thanh, Phong Nguyen
    Tran, Duong
    APPLIED SOFT COMPUTING, 2024, 150
  • [10] A Machine Learning-based Framework for Building Application Failure Prediction Models
    Pellegrini, Alessandro
    Di Sanzo, Pierangelo
    Avresky, Dimiter R.
    2015 IEEE 29TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, 2015, : 1072 - 1081