Machine learning-based analysis and prediction of meteorological factors and urban heatstroke diseases

被引:1
|
作者
Xu, Hui [1 ]
Guo, Shufang [1 ]
Shi, Xiaojun [1 ]
Wu, Yanzhen [1 ]
Pan, Junyi [1 ]
Gao, Han [2 ]
Tang, Yan [1 ]
Han, Aiqing [1 ]
机构
[1] Beijing Univ Chinese Med, Sch Management, Beijing, Peoples R China
[2] Beijing Univ Chinese Med, Sch Humanities, Beijing, Peoples R China
关键词
heatstroke; meteorological factor; machine learning; time series; DLNM; CLIMATE-CHANGE; HEATWAVE; HEALTH; MODEL;
D O I
10.3389/fpubh.2024.1420608
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Introduction Heatstroke is a serious clinical condition caused by exposure to high temperature and high humidity environment, which leads to a rapid increase of the core temperature of the body to more than 40 degrees C, accompanied by skin burning, consciousness disorders and other organ system damage. This study aims to analyze the effect of meteorological factors on the incidence of heatstroke using machine learning, and to construct a heatstroke forecasting model to provide reference for heatstroke prevention.Methods The data of heatstroke incidence and meteorological factors in a city in South China from May to September 2014-2019 were analyzed in this study. The lagged effect of meteorological factors on heatstroke incidence was analyzed based on the distributed lag non-linear model, and the prediction model was constructed by using regression decision tree, random forest, gradient boosting trees, linear SVRs, LSTMs, and ARIMA algorithm.Results The cumulative lagged effect found that heat index, dew-point temperature, daily maximum temperature and relative humidity had the greatest influence on heatstroke. When the heat index, dew-point temperature, and daily maximum temperature exceeded certain thresholds, the risk of heatstroke was significantly increased on the same day and within the following 5 days. The lagged effect of relative humidity on the occurrence of heatstroke was different with the change of relative humidity, and both excessively high and low environmental humidity levels exhibited a longer lagged effect on the occurrence of heatstroke. With regard to the prediction model, random forest model had the best performance of 5.28 on RMSE and dropped to 3.77 after being adjusted.Discussion The incidence of heatstroke in this city is significantly correlated with heat index, heatwave, dew-point temperature, air temperature and zhongfu, among which the heat index and dew-point temperature have a significant lagged effect on heatstroke incidence. Relevant departments need to closely monitor the data of the correlated factors, and adopt heat prevention measures before the temperature peaks, calling on citizens to reduce outdoor activities.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Machine Learning-Based Aviation Meteorological Risk Prediction Model
    Miao, Shaohui
    Du, Jiaxing
    SPIN, 2025,
  • [2] Machine Learning-based Prediction and Analysis of Air and Noise Pollution in Urban Environments
    Vijayalakshmi, A.
    Abishek, Ebenezer B.
    Rubi, Jaya
    Dhivya, Josephin Arockia
    Kavidoss, K.
    Ram, Aakas A. S.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 1080 - 1085
  • [3] Machine Learning-Based Radio Coverage Prediction in Urban Environments
    Mohammadjafari, Sanaz
    Roginsky, Sophie
    Kavurmacioglu, Emir
    Cevik, Mucahit
    Ethier, Jonathan
    Bener, Ayse Basar
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (04): : 2117 - 2130
  • [4] Machine learning-based analysis of adolescent gambling factors
    Seo, Wonju
    Kim, Namho
    Lee, Sang-Kyu
    Park, Sung-Min
    JOURNAL OF BEHAVIORAL ADDICTIONS, 2020, 9 (03) : 734 - 743
  • [5] Machine learning-based prediction of transfusion
    Mitterecker, Andreas
    Hofmann, Axel
    Trentino, Kevin M.
    Lloyd, Adam
    Leahy, Michael F.
    Schwarzbauer, Karin
    Tschoellitsch, Thomas
    Boeck, Carl
    Hochreiter, Sepp
    Meier, Jens
    TRANSFUSION, 2020, 60 (09) : 1977 - 1986
  • [6] Analysis and Prediction of the Impact of Socio-Economic and Meteorological Factors on Rapeseed Yield Based on Machine Learning
    Liang, Jiaping
    Li, Hang
    Li, Na
    Yang, Qiliang
    Li, Linchao
    AGRONOMY-BASEL, 2023, 13 (07):
  • [7] Influencing Factors and Machine Learning-Based Prediction of Side Effects in Psychotherapy
    Yao, Lijun
    Zhao, Xudong
    Xu, Zhiwei
    Chen, Yang
    Liu, Liang
    Feng, Qiang
    Chen, Fazhan
    FRONTIERS IN PSYCHIATRY, 2020, 11
  • [8] Influencing Factors Evaluation of Machine Learning-Based Energy Consumption Prediction
    Khan, Prince Waqas
    Kim, Yongjun
    Byun, Yung-Cheol
    Lee, Sang-Joon
    ENERGIES, 2021, 14 (21)
  • [9] Supervised Machine Learning-Based Cardiovascular Disease Analysis and Prediction
    Hossen, M. D. Amzad
    Tazin, Tahia
    Khan, Sumiaya
    Alam, Evan
    Sojib, Hossain Ahmed
    Khan, Mohammad Monirujjaman
    Alsufyani, Abdulmajeed
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [10] Machine Learning-Based A Comparative Analysis for Air Quality Prediction
    Utku, Anil
    Can, Umit
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,