Enumeration formulae for self-orthogonal, self-dual and complementary-dual additive cyclic codes over finite commutative chain rings

被引:0
|
作者
Jose, Leijo [1 ]
Sharma, Anuradha [1 ]
机构
[1] IIIT Delhi, Dept Math, New Delhi 110020, India
关键词
Galois extensions; Witt decomposition; Quasi-Galois rings;
D O I
10.1007/s12095-024-00728-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let R, S be two finite commutative chain rings such that R is the Galois extension of S of degree r >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \ge 2$$\end{document} and has a self-dual basis over S. Let q be the order of the residue field of S, and let N be a positive integer with gcd(N,q)=1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (N,q)=1.$$\end{document} An S-additive cyclic code of length N over R is defined as an S-submodule of RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>N,$$\end{document} which is invariant under the cyclic shift operator on RN.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>N.$$\end{document} In this paper, we show that each S-additive cyclic code of length N over R can be uniquely expressed as a direct sum of linear codes of length r over certain Galois extensions of the chain ring S, which are called its constituents. We further study the dual code of each S-additive cyclic code of length N over R by placing the ordinary trace bilinear form on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>N$$\end{document} and relating the constituents of the code with that of its dual code. With the help of these canonical form decompositions of S-additive cyclic codes of length N over R and their dual codes, we further characterize all self-orthogonal, self-dual and complementary-dual S-additive cyclic codes of length N over R in terms of their constituents. We also derive necessary and sufficient conditions for the existence of a self-dual S-additive cyclic code of length N over R and count all self-dual and self-orthogonal S-additive cyclic codes of length N over R by considering the following two cases: (I) both q, r are odd, and (II) q is even and S=Fq[u]/< ue >.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\mathbb {F}_{q}[u]/\langle u<^>e \rangle .$$\end{document} Besides this, we obtain the explicit enumeration formula for all complementary-dual S-additive cyclic codes of length N over R. We also illustrate our main results with some examples.
引用
收藏
页码:1383 / 1416
页数:34
相关论文
共 50 条
  • [41] Various constructions for self-dual codes over rings and new binary self-dual codes
    Kaya, Abidin
    Yildiz, Bahattin
    DISCRETE MATHEMATICS, 2016, 339 (02) : 460 - 469
  • [42] The number of self-dual cyclic codes over finite fields
    Zhang, Qiang
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (06) : 5795 - 5803
  • [43] Self-Dual Constacyclic Codes over Finite Non-Chain Rings and Their Applications
    Gao J.
    Wang Y.-K.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (02): : 296 - 302
  • [44] Ternary quantum codes constructed from extremal self-dual codes and self-orthogonal codes
    Guan, Chaofeng
    Li, Ruihu
    Song, Hao
    Lu, Liangdong
    Li, Husheng
    AIMS MATHEMATICS, 2022, 7 (04): : 6516 - 6534
  • [45] Euclidean self-dual codes over non-commutative Frobenius rings
    Dougherty, Steven T.
    Leroy, Andre
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2016, 27 (03) : 185 - 203
  • [46] MDS and self-dual codes over rings
    Guenda, Kenza
    Gulliver, T. Aaron
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (06) : 1061 - 1075
  • [47] Euclidean self-dual codes over non-commutative Frobenius rings
    Steven T. Dougherty
    André Leroy
    Applicable Algebra in Engineering, Communication and Computing, 2016, 27 : 185 - 203
  • [48] Quantum Codes Constructed from Self-Dual Codes and Maximal Self-Orthogonal Codes Over F5
    Guo, Luobin
    Ma, Yuena
    Feng, Youqian
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 3448 - 3453
  • [49] Self-dual codes and orthogonal matrices over large finite fields
    Shi, Minjia
    Sok, Lin
    Sole, Patrick
    Calkavur, Selda
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 : 297 - 314
  • [50] Self-dual additive codes
    Steven T. Dougherty
    Adrian Korban
    Serap Şahinkaya
    Applicable Algebra in Engineering, Communication and Computing, 2022, 33 : 569 - 586