Enumeration formulae for self-orthogonal, self-dual and complementary-dual additive cyclic codes over finite commutative chain rings

被引:0
|
作者
Jose, Leijo [1 ]
Sharma, Anuradha [1 ]
机构
[1] IIIT Delhi, Dept Math, New Delhi 110020, India
关键词
Galois extensions; Witt decomposition; Quasi-Galois rings;
D O I
10.1007/s12095-024-00728-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let R, S be two finite commutative chain rings such that R is the Galois extension of S of degree r >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \ge 2$$\end{document} and has a self-dual basis over S. Let q be the order of the residue field of S, and let N be a positive integer with gcd(N,q)=1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (N,q)=1.$$\end{document} An S-additive cyclic code of length N over R is defined as an S-submodule of RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>N,$$\end{document} which is invariant under the cyclic shift operator on RN.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>N.$$\end{document} In this paper, we show that each S-additive cyclic code of length N over R can be uniquely expressed as a direct sum of linear codes of length r over certain Galois extensions of the chain ring S, which are called its constituents. We further study the dual code of each S-additive cyclic code of length N over R by placing the ordinary trace bilinear form on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>N$$\end{document} and relating the constituents of the code with that of its dual code. With the help of these canonical form decompositions of S-additive cyclic codes of length N over R and their dual codes, we further characterize all self-orthogonal, self-dual and complementary-dual S-additive cyclic codes of length N over R in terms of their constituents. We also derive necessary and sufficient conditions for the existence of a self-dual S-additive cyclic code of length N over R and count all self-dual and self-orthogonal S-additive cyclic codes of length N over R by considering the following two cases: (I) both q, r are odd, and (II) q is even and S=Fq[u]/< ue >.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\mathbb {F}_{q}[u]/\langle u<^>e \rangle .$$\end{document} Besides this, we obtain the explicit enumeration formula for all complementary-dual S-additive cyclic codes of length N over R. We also illustrate our main results with some examples.
引用
收藏
页码:1383 / 1416
页数:34
相关论文
共 50 条
  • [31] On Self-Dual Cyclic Codes Over Finite Fields
    Jia, Yan
    Ling, San
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (04) : 2243 - 2251
  • [32] The Mass Formula for Self-Orthogonal and Self-Dual Codes over a Non-Unitary Non-Commutative Ring
    Alahmadi, Adel
    Alshuhail, Altaf
    Betty, Rowena Alma
    Galvez, Lucky
    Sole, Patrick
    MATHEMATICS, 2024, 12 (06)
  • [33] Enumeration of self-dual cyclic codes of some specific lengths over finite fields
    Prugsapitak, Supawadee
    Jitman, Somphong
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (03)
  • [34] A Modulus Factorization Algorithm for Self-Orthogonal and Self-Dual Integer Codes
    Matsui, Hajime
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (11) : 1952 - 1956
  • [35] Construction of self-dual codes over finite rings Zpm
    Lee, Heisook
    Lee, Yoonjin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (03) : 407 - 422
  • [36] On LCD, self dual and isodual cyclic codes over finite chain rings
    Benyettou, Amel
    Batoul, Aicha
    Fernandez-Cordoba, Cristina
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 79
  • [37] A New Method for Constructing Self-Dual Codes over Finite Commutative Rings with Characteristic 2
    Ma, Yongsheng
    Nan, Jizhu
    Liu, Yuanbo
    MATHEMATICS, 2024, 12 (17)
  • [38] ENUMERATION OF SELF-DUAL CODES
    CONWAY, JH
    PLESS, V
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 28 (01) : 26 - 53
  • [39] γ-Dual Codes over Finite Commutative Chain Rings
    Dinh, Hai Q.
    Thi, Hiep L.
    Tansuchat, Roengchai
    AXIOMS, 2024, 13 (10)
  • [40] Additive cyclic codes over finite commutative chain rings
    Martinez-Moro, Edgar
    Otal, Kamil
    Ozbudak, Ferruh
    DISCRETE MATHEMATICS, 2018, 341 (07) : 1873 - 1884