Enumeration formulae for self-orthogonal, self-dual and complementary-dual additive cyclic codes over finite commutative chain rings

被引:0
|
作者
Jose, Leijo [1 ]
Sharma, Anuradha [1 ]
机构
[1] IIIT Delhi, Dept Math, New Delhi 110020, India
关键词
Galois extensions; Witt decomposition; Quasi-Galois rings;
D O I
10.1007/s12095-024-00728-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let R, S be two finite commutative chain rings such that R is the Galois extension of S of degree r >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \ge 2$$\end{document} and has a self-dual basis over S. Let q be the order of the residue field of S, and let N be a positive integer with gcd(N,q)=1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (N,q)=1.$$\end{document} An S-additive cyclic code of length N over R is defined as an S-submodule of RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>N,$$\end{document} which is invariant under the cyclic shift operator on RN.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>N.$$\end{document} In this paper, we show that each S-additive cyclic code of length N over R can be uniquely expressed as a direct sum of linear codes of length r over certain Galois extensions of the chain ring S, which are called its constituents. We further study the dual code of each S-additive cyclic code of length N over R by placing the ordinary trace bilinear form on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>N$$\end{document} and relating the constituents of the code with that of its dual code. With the help of these canonical form decompositions of S-additive cyclic codes of length N over R and their dual codes, we further characterize all self-orthogonal, self-dual and complementary-dual S-additive cyclic codes of length N over R in terms of their constituents. We also derive necessary and sufficient conditions for the existence of a self-dual S-additive cyclic code of length N over R and count all self-dual and self-orthogonal S-additive cyclic codes of length N over R by considering the following two cases: (I) both q, r are odd, and (II) q is even and S=Fq[u]/< ue >.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\mathbb {F}_{q}[u]/\langle u<^>e \rangle .$$\end{document} Besides this, we obtain the explicit enumeration formula for all complementary-dual S-additive cyclic codes of length N over R. We also illustrate our main results with some examples.
引用
收藏
页码:1383 / 1416
页数:34
相关论文
共 50 条
  • [21] Some optimal self-orthogonal and self-dual codes
    Bouyuklieva, S
    DISCRETE MATHEMATICS, 2004, 287 (1-3) : 1 - 10
  • [22] Self dual and MHDR dual cyclic codes over finite chain rings
    Dalal, Monika
    Garg, Disha
    Dutt, Sucheta
    Sehmi, Ranjeet
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2024, : 1475 - 1489
  • [23] Cyclic self-orthogonal codes over finite chain ring
    Singh, Abhay Kumar
    Kumar, Narendra
    Shum, Kar Ping
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (06)
  • [24] Self-dual and maximal self-orthogonal codes over F7
    Harada, M
    Östergård, PRJ
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 471 - 477
  • [25] Self-dual and self-orthogonal negacyclic codes of length 2mpn over a finite field
    Sharma, Anuradha
    DISCRETE MATHEMATICS, 2015, 338 (04) : 576 - 592
  • [26] Self-dual and self-orthogonal negacyclic codes of length 2pn over a finite field
    Bakshi, Gurmeet K.
    Raka, Madhu
    FINITE FIELDS AND THEIR APPLICATIONS, 2013, 19 (01) : 39 - 54
  • [27] Constructions of self-dual codes and formally self-dual codes over rings
    Dougherty, Steven T.
    Kaya, Abidin
    Salturk, Esengul
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2016, 27 (05) : 435 - 449
  • [28] Constructions of self-dual codes and formally self-dual codes over rings
    Steven T Dougherty
    Abidin Kaya
    Esengül Saltürk
    Applicable Algebra in Engineering, Communication and Computing, 2016, 27 : 435 - 449
  • [29] Mass Formula for Self-Orthogonal and Self-Dual Codes over Non-Unital Rings of Order Four
    Alahmadi, Adel
    Alshuhail, Altaf
    Betty, Rowena Alma
    Galvez, Lucky
    Sole, Patrick
    MATHEMATICS, 2023, 11 (23)
  • [30] Enumeration formulas for self-dual cyclic codes
    Chen, Bocong
    Ling, San
    Zhang, Guanghui
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 42 : 1 - 22