Isolated Pulsar Population Synthesis with Simulation-based Inference

被引:1
|
作者
Graber, Vanessa [1 ,2 ,3 ]
Ronchi, Michele [1 ,2 ]
Pardo-Araujo, Celsa [1 ,2 ]
Rea, Nanda [1 ,2 ]
机构
[1] Inst Space Sci CSIC ICE, Campus UAB,Carrer Can Magrans s-n, Barcelona 08193, Spain
[2] Inst Estudis Espacials Catalunya IEEC, Carrer Gran Capita 2-4, Barcelona 08034, Spain
[3] Univ Hertfordshire, Ctr Astrophys Res, Dept Phys Astron & Math, Coll Lane, Hatfield AL10 9AB, England
来源
ASTROPHYSICAL JOURNAL | 2024年 / 968卷 / 01期
关键词
ISOLATED NEUTRON-STARS; OBSERVED VELOCITY DISTRIBUTION; MAGNETIC-FIELD; RADIO-PULSARS; MAGNETOTHERMAL EVOLUTION; GALACTIC POPULATION; WIDTH STATISTICS; SPIN PERIODS; RAY PULSARS; EMISSION;
D O I
10.3847/1538-4357/ad3e78
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We combine pulsar population synthesis with simulation-based inference (SBI) to constrain the magnetorotational properties of isolated Galactic radio pulsars. We first develop a framework to model neutron star birth properties and their dynamical and magnetorotational evolution. We specifically sample initial magnetic field strengths, B, and spin periods, P, from lognormal distributions and capture the late-time magnetic field decay with a power law. Each lognormal is described by a mean, mu log B , mu log P , and standard deviation, sigma log B , sigma log P , while the power law is characterized by the index, a late. We subsequently model the stars' radio emission and observational biases to mimic detections with three radio surveys, and we produce a large database of synthetic P- P diagrams by varying our five magnetorotational input parameters. We then follow an SBI approach that focuses on neural posterior estimation and train deep neural networks to infer the parameters' posterior distributions. After successfully validating these individual neural density estimators on simulated data, we use an ensemble of networks to infer the posterior distributions for the observed pulsar population. We obtain mu log B = 13.10 - 0.10 + 0.08 , sigma log B = 0.45 - 0.05 + 0.05 and mu log P = - 1.00 - 0.21 + 0.26 , sigma log P = 0.38 - 0.18 + 0.33 for the lognormal distributions and a late = - 1.80 - 0.61 + 0.65 for the power law at the 95% credible interval. We contrast our results with previous studies and highlight uncertainties of the inferred a late value. Our approach represents a crucial step toward robust statistical inference for complex population synthesis frameworks and forms the basis for future multiwavelength analyses of Galactic pulsars.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Benchmarking Simulation-Based Inference
    Lueckmann, Jan-Matthis
    Boelts, Jan
    Greenberg, David S.
    Goncalves, Pedro J.
    Macke, Jakob H.
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 343 - +
  • [2] The frontier of simulation-based inference
    Cranmer, Kyle
    Brehmer, Johann
    Louppe, Gilles
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (48) : 30055 - 30062
  • [3] Testing the robustness of simulation-based gravitational-wave population inference
    Cheung, Damon H. T.
    Wong, Kaze W. K.
    Hannuksela, Otto A.
    Li, Tjonnie G. F.
    Ho, Shirley
    PHYSICAL REVIEW D, 2022, 106 (08)
  • [4] Simulation-based inference for plan monitoring
    Lesh, Neal
    Allen, James
    Proceedings of the National Conference on Artificial Intelligence, 1999, : 358 - 365
  • [5] Simulation-based inference in particle physics
    Johann Brehmer
    Nature Reviews Physics, 2021, 3 : 305 - 305
  • [6] Simulation-based inference in particle physi
    Brehmer, Johann
    NATURE REVIEWS PHYSICS, 2021, 3 (05) : 305 - 305
  • [7] Simulation-based inference for plan monitoring
    Lesh, N
    Allen, J
    SIXTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-99)/ELEVENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE (IAAI-99), 1999, : 358 - 365
  • [8] Simulation-based inference of deep fields: galaxy population model and redshift distributions
    Moser, Beatrice
    Kacprzak, Tomasz
    Fischbacher, Silvan
    Refregier, Alexandre
    Grimm, Dominic
    Tortorelli, Luca
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (05):
  • [10] Simulation-based bayesian inference using BUGS
    Ching-fan Sheu
    Suzanne L. O’Curry
    Behavior Research Methods, Instruments, & Computers, 1998, 30 : 232 - 237