Isolated Pulsar Population Synthesis with Simulation-based Inference

被引:1
|
作者
Graber, Vanessa [1 ,2 ,3 ]
Ronchi, Michele [1 ,2 ]
Pardo-Araujo, Celsa [1 ,2 ]
Rea, Nanda [1 ,2 ]
机构
[1] Inst Space Sci CSIC ICE, Campus UAB,Carrer Can Magrans s-n, Barcelona 08193, Spain
[2] Inst Estudis Espacials Catalunya IEEC, Carrer Gran Capita 2-4, Barcelona 08034, Spain
[3] Univ Hertfordshire, Ctr Astrophys Res, Dept Phys Astron & Math, Coll Lane, Hatfield AL10 9AB, England
来源
ASTROPHYSICAL JOURNAL | 2024年 / 968卷 / 01期
关键词
ISOLATED NEUTRON-STARS; OBSERVED VELOCITY DISTRIBUTION; MAGNETIC-FIELD; RADIO-PULSARS; MAGNETOTHERMAL EVOLUTION; GALACTIC POPULATION; WIDTH STATISTICS; SPIN PERIODS; RAY PULSARS; EMISSION;
D O I
10.3847/1538-4357/ad3e78
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We combine pulsar population synthesis with simulation-based inference (SBI) to constrain the magnetorotational properties of isolated Galactic radio pulsars. We first develop a framework to model neutron star birth properties and their dynamical and magnetorotational evolution. We specifically sample initial magnetic field strengths, B, and spin periods, P, from lognormal distributions and capture the late-time magnetic field decay with a power law. Each lognormal is described by a mean, mu log B , mu log P , and standard deviation, sigma log B , sigma log P , while the power law is characterized by the index, a late. We subsequently model the stars' radio emission and observational biases to mimic detections with three radio surveys, and we produce a large database of synthetic P- P diagrams by varying our five magnetorotational input parameters. We then follow an SBI approach that focuses on neural posterior estimation and train deep neural networks to infer the parameters' posterior distributions. After successfully validating these individual neural density estimators on simulated data, we use an ensemble of networks to infer the posterior distributions for the observed pulsar population. We obtain mu log B = 13.10 - 0.10 + 0.08 , sigma log B = 0.45 - 0.05 + 0.05 and mu log P = - 1.00 - 0.21 + 0.26 , sigma log P = 0.38 - 0.18 + 0.33 for the lognormal distributions and a late = - 1.80 - 0.61 + 0.65 for the power law at the 95% credible interval. We contrast our results with previous studies and highlight uncertainties of the inferred a late value. Our approach represents a crucial step toward robust statistical inference for complex population synthesis frameworks and forms the basis for future multiwavelength analyses of Galactic pulsars.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Using simulation-based inference for learning introductory statistics
    Rossman, Allan J.
    Chance, Beth L.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (04): : 211 - 221
  • [22] Simulation-based optimization: Convergence analysis and statistical inference
    Shapiro, A.
    Communications in Statistics. Part C: Stochastic Models, 1996, 12 (03): : 425 - 454
  • [23] Simulation-based inference of single-molecule experiments
    Dingeldein, Lars
    Cossio, Pilar
    Covino, Roberto
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2025, 91
  • [24] Accelerating Simulation-based Inference with Emerging AI Hardware
    Kulkarni, Sourabh
    Tsyplikhin, Alexander
    Krell, Mario Michael
    Moritz, Csaba Andras
    2020 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2020), 2020, : 126 - 132
  • [25] Simulation-based inference for simultaneous processes on regular lattices
    Xavier De Luna
    Marc G. Genton
    Statistics and Computing, 2002, 12 : 125 - 134
  • [26] Improving Effectiveness of Simulation-Based Inference in the Massively Parallel Regime
    Kulkarni, Sourabh
    Moritz, Csaba Andras
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (04) : 1100 - 1114
  • [27] Simulation-based inference for model parameterization on analog neuromorphic hardware
    Kaiser, Jakob
    Stock, Raphael
    Mueller, Eric
    Schemmel, Johannes
    Schmitt, Sebastian
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2023, 3 (04):
  • [28] Efficient simulation-based minimum distance estimation and indirect inference
    Nickl R.
    Pötscher B.M.
    Mathematical Methods of Statistics, 2010, 19 (4) : 327 - 364
  • [29] Robust simulation-based inference in cosmology with Bayesian neural networks
    Lemos, Pablo
    Cranmer, Miles
    Abidi, Muntazir
    Hahn, ChangHoon
    Eickenberg, Michael
    Massara, Elena
    Yallup, David
    Ho, Shirley
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (01):
  • [30] Simulation-based inference of black hole ringdowns in the time domain
    Pacilio, Costantino
    Bhagwat, Swetha
    Cotesta, Roberto
    PHYSICAL REVIEW D, 2024, 110 (08)