Isolated Pulsar Population Synthesis with Simulation-based Inference

被引:1
|
作者
Graber, Vanessa [1 ,2 ,3 ]
Ronchi, Michele [1 ,2 ]
Pardo-Araujo, Celsa [1 ,2 ]
Rea, Nanda [1 ,2 ]
机构
[1] Inst Space Sci CSIC ICE, Campus UAB,Carrer Can Magrans s-n, Barcelona 08193, Spain
[2] Inst Estudis Espacials Catalunya IEEC, Carrer Gran Capita 2-4, Barcelona 08034, Spain
[3] Univ Hertfordshire, Ctr Astrophys Res, Dept Phys Astron & Math, Coll Lane, Hatfield AL10 9AB, England
来源
ASTROPHYSICAL JOURNAL | 2024年 / 968卷 / 01期
关键词
ISOLATED NEUTRON-STARS; OBSERVED VELOCITY DISTRIBUTION; MAGNETIC-FIELD; RADIO-PULSARS; MAGNETOTHERMAL EVOLUTION; GALACTIC POPULATION; WIDTH STATISTICS; SPIN PERIODS; RAY PULSARS; EMISSION;
D O I
10.3847/1538-4357/ad3e78
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We combine pulsar population synthesis with simulation-based inference (SBI) to constrain the magnetorotational properties of isolated Galactic radio pulsars. We first develop a framework to model neutron star birth properties and their dynamical and magnetorotational evolution. We specifically sample initial magnetic field strengths, B, and spin periods, P, from lognormal distributions and capture the late-time magnetic field decay with a power law. Each lognormal is described by a mean, mu log B , mu log P , and standard deviation, sigma log B , sigma log P , while the power law is characterized by the index, a late. We subsequently model the stars' radio emission and observational biases to mimic detections with three radio surveys, and we produce a large database of synthetic P- P diagrams by varying our five magnetorotational input parameters. We then follow an SBI approach that focuses on neural posterior estimation and train deep neural networks to infer the parameters' posterior distributions. After successfully validating these individual neural density estimators on simulated data, we use an ensemble of networks to infer the posterior distributions for the observed pulsar population. We obtain mu log B = 13.10 - 0.10 + 0.08 , sigma log B = 0.45 - 0.05 + 0.05 and mu log P = - 1.00 - 0.21 + 0.26 , sigma log P = 0.38 - 0.18 + 0.33 for the lognormal distributions and a late = - 1.80 - 0.61 + 0.65 for the power law at the 95% credible interval. We contrast our results with previous studies and highlight uncertainties of the inferred a late value. Our approach represents a crucial step toward robust statistical inference for complex population synthesis frameworks and forms the basis for future multiwavelength analyses of Galactic pulsars.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Simulation-based inference for parameter estimation of complex watershed simulators
    Hull, Robert
    Leonarduzzi, Elena
    de la Fuente, Luis
    Tran, Hoang Viet
    Bennett, Andrew
    Melchior, Peter
    Maxwell, Reed M.
    Condon, Laura E.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2024, 28 (20) : 4685 - 4713
  • [32] Identification of Vehicle Dynamics Parameters Using Simulation-based Inference
    Boyali, Ali
    Thompson, Simon
    Wong, David Robert
    2021 IEEE INTELLIGENT VEHICLES SYMPOSIUM WORKSHOPS (IV WORKSHOPS), 2021, : 306 - 312
  • [33] Amortized simulation-based frequentist inference for tractable and intractable likelihoods
    Al Kadhim, Ali
    Prosper, Harrison B.
    Prosper, Olivia F.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (01):
  • [34] Simulation-based Inference of Radio Millisecond Pulsars in Globular Clusters
    Berteaud, Joanna
    Eckner, Christopher
    Calore, Francesca
    Clavel, Maica
    Haggard, Daryl
    ASTROPHYSICAL JOURNAL, 2024, 974 (01):
  • [35] Simulation-based inference of single-molecule force spectroscopy
    Dingeldein, Lars
    Cossio, Pilar
    Covino, Roberto
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (02):
  • [36] Models for interval censoring and simulation-based inference for lifetime distributions
    Lawless, J. F.
    Babineau, Denise
    BIOMETRIKA, 2006, 93 (03) : 671 - 686
  • [37] Simulation-based inference of single-molecule force spectroscopy
    Covino, Roberto
    Cossio, Pilar
    Dingeldein, Lars
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 140A - 140A
  • [38] Using simulation-based inference with panel data in health economics
    Contoyannis, P
    Jones, AM
    Leon-Gonzalez, R
    HEALTH ECONOMICS, 2004, 13 (02) : 101 - 122
  • [39] Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability
    Falkiewicz, Maciej
    Takeishi, Naoya
    Shekhzadeh, Imahn
    Wehenkel, Antoine
    Delaunoy, Arnaud
    Louppe, Gilles
    Kalousis, Alexandros
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [40] Simulation-Based Population Dynamics Analysis: Korean Population Aging
    Bae, Jang Won
    Paik, Euihyun
    Singh, Karandeep
    THEORY, METHODOLOGY, TOOLS AND APPLICATIONS FOR MODELING AND SIMULATION OF COMPLEX SYSTEMS, PT IV, 2016, 646 : 358 - 367