Simulation-based inference of deep fields: galaxy population model and redshift distributions

被引:6
|
作者
Moser, Beatrice [1 ]
Kacprzak, Tomasz [1 ,2 ]
Fischbacher, Silvan [1 ]
Refregier, Alexandre [1 ]
Grimm, Dominic [1 ]
Tortorelli, Luca [3 ]
机构
[1] Swiss Fed Inst Technol, Inst Particle Phys & Astrophys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[2] Paul Scherrer Inst, Swiss Data Sci Ctr, Forschungsstr 111, CH-5232 Villigen, Switzerland
[3] Ludwig Maximilian Univ Munchen, Univ Observ, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany
基金
瑞士国家科学基金会;
关键词
galaxy surveys; galaxy evolution; Bayesian reasoning; cosmological simulations; PHOTOMETRIC REDSHIFTS; EVOLUTION; REQUIREMENTS; CALIBRATION; PARAMETERS; ERRORS; SIZE;
D O I
10.1088/1475-7516/2024/05/049
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Accurate redshift calibration is required to obtain unbiased cosmological information from large-scale galaxy surveys. In a forward modelling approach, the redshift distribution n(z) of a galaxy sample is measured using a parametric galaxy population model constrained by observations. We use a model that captures the redshift evolution of the galaxy luminosity functions, colours, and morphology, for red and blue samples. We constrain this model via simulation -based inference, using factorized Approximate Bayesian Computation (ABC) at the image level. We apply this framework to HSC deep field images, complemented with photometric redshifts from COSMOS2020. The simulated telescope images include realistic observational and instrumental effects. By applying the same processing and selection to real data and simulations, we obtain a sample of n(z) distributions from the ABC posterior. The photometric properties of the simulated galaxies are in good agreement with those from the real data, including magnitude, colour and redshift joint distributions. We compare the posterior n(z) from our simulations to the COSMOS2020 redshift distributions obtained via template fitting photometric data spanning the wavelength range from UV to IR. We mitigate sample variance in COSMOS by applying a reweighting technique. We thus obtain a good agreement between the simulated and observed redshift distributions, with a difference in the mean at the 1 sigma level up to a magnitude of 24 in the i band. We discuss how our forward model can be applied to current and future surveys and be further extended. The ABC posterior and further material will be made publicly available at https://cosmology.ethz.ch/research/software-lab/ufig.html.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Sensitivity analysis of simulation-based inference for galaxy clustering
    Modi, Chirag
    Pandey, Shivam
    Ho, Matthew
    Hahn, Changhoon
    Regaldo-Saint Blancard, Bruno
    Wandelt, Benjamin
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 536 (01) : 254 - 265
  • [2] Models for interval censoring and simulation-based inference for lifetime distributions
    Lawless, J. F.
    Babineau, Denise
    BIOMETRIKA, 2006, 93 (03) : 671 - 686
  • [3] Isolated Pulsar Population Synthesis with Simulation-based Inference
    Graber, Vanessa
    Ronchi, Michele
    Pardo-Araujo, Celsa
    Rea, Nanda
    ASTROPHYSICAL JOURNAL, 2024, 968 (01):
  • [4] Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys
    Leistedt, Boris
    Mortlock, Daniel J.
    Peiris, Hiranya V.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (04) : 4258 - 4267
  • [5] Simulation-based inference of differentiation trajectories from RNA velocity fields
    Gupta, Revant
    Cerletti, Dario
    Gut, Gilles
    Oxenius, Annette
    Claassen, Manfred
    CELL REPORTS METHODS, 2022, 2 (12):
  • [6] Benchmarking Simulation-Based Inference
    Lueckmann, Jan-Matthis
    Boelts, Jan
    Greenberg, David S.
    Goncalves, Pedro J.
    Macke, Jakob H.
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 343 - +
  • [7] The frontier of simulation-based inference
    Cranmer, Kyle
    Brehmer, Johann
    Louppe, Gilles
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (48) : 30055 - 30062
  • [8] Field-level simulation-based inference with galaxy catalogs: the impact of systematic effects
    de Santi, Natali S. M.
    Villaescusa-Navarro, Francisco
    Abramo, L. Raul
    Shao, Helen
    Perez, Lucia A.
    Castro, Tiago
    Ni, Yueying
    Lovell, Christopher C.
    Hernandez-Martinez, Elena
    Marinacci, Federico
    Spergel, David N.
    Dolag, Klaus
    Hernquist, Lars
    Vogelsberger, Mark
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2025, (01):
  • [9] Field-level simulation-based inference of galaxy clustering with convolutional neural networks
    Lemos, Pablo
    Parker, Liam
    Hahn, Changhoon
    Ho, Shirley
    Eickenberg, Michael
    Hou, Jiamin
    Massara, Elena
    Modi, Chirag
    Dizgah, Azadeh Moradinezhad
    Blancard, Bruno Regaldo-Saint
    Spergel, David
    PHYSICAL REVIEW D, 2024, 109 (08)
  • [10] Testing the robustness of simulation-based gravitational-wave population inference
    Cheung, Damon H. T.
    Wong, Kaze W. K.
    Hannuksela, Otto A.
    Li, Tjonnie G. F.
    Ho, Shirley
    PHYSICAL REVIEW D, 2022, 106 (08)