SCIntRuler: guiding the integration of multiple single-cell RNA-seq datasets with a novel statistical metric

被引:0
|
作者
Lyu, Yue [1 ,2 ]
Lin, Steven H. [3 ]
Wu, Hao [4 ,5 ]
Li, Ziyi [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Biostat, 7007 Bertner Ave, Houston, TX 77030 USA
[2] Univ Texas Hlth Sci Ctr Houston, Dept Biostat & Data Sci, Houston, TX 77030 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Thorac Radiat Oncol, Div Radiat Oncol, Houston, TX 77030 USA
[4] Shenzhen Univ Adv Technol, Fac Comp Sci & Control Engn, Shenzhen 518055, Guangdong, Peoples R China
[5] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Guangdong, Peoples R China
基金
美国国家卫生研究院;
关键词
ATLAS;
D O I
10.1093/bioinformatics/btae537
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation The growing number of single-cell RNA-seq (scRNA-seq) studies highlights the potential benefits of integrating multiple datasets, such as augmenting sample sizes and enhancing analytical robustness. Inherent diversity and batch discrepancies within samples or across studies continue to pose significant challenges for computational analyses. Questions persist in practice, lacking definitive answers: Should we use a specific integration method or opt for simply merging the datasets during joint analysis? Among all the existing data integration methods, which one is more suitable in specific scenarios?Result To fill the gap, we introduce SCIntRuler, a novel statistical metric for guiding the integration of multiple scRNA-seq datasets. SCIntRuler helps researchers make informed decisions regarding the necessity of data integration and the selection of an appropriate integration method. Our simulations and real data applications demonstrate that SCIntRuler streamlines decision-making processes and facilitates the analysis of diverse scRNA-seq datasets under varying contexts, thereby alleviating the complexities associated with the integration of heterogeneous scRNA-seq datasets.Availability and implementation The implementation of our method is available on CRAN as an open-source R package with a user-friendly manual available: https://cloud.r-project.org/web/packages/SCIntRuler/index.html
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Integration of Single-Cell RNA-Seq Datasets: A Review of Computational Methods
    Ryu, Yeonjae
    Han, Geun Hee
    Jung, Eunsoo
    Hwang, Daehee
    MOLECULES AND CELLS, 2023, 46 (02) : 106 - 119
  • [2] An interpretable framework for clustering single-cell RNA-Seq datasets
    Jesse M. Zhang
    Jue Fan
    H. Christina Fan
    David Rosenfeld
    David N. Tse
    BMC Bioinformatics, 19
  • [3] Single-cell RNA-seq clustering: datasets, models, and algorithms
    Peng, Lihong
    Tian, Xiongfei
    Tian, Geng
    Xu, Junlin
    Huang, Xin
    Weng, Yanbin
    Yang, Jialiang
    Zhou, Liqian
    RNA BIOLOGY, 2020, 17 (06) : 765 - 783
  • [4] Processing single-cell RNA-seq datasets using SingCellaR
    Wang, Guanlin
    Wen, Wei Xiong
    Mead, Adam J.
    Roy, Anindita
    Psaila, Bethan
    Thongjuea, Supat
    STAR PROTOCOLS, 2022, 3 (02):
  • [5] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    BMC BIOINFORMATICS, 2018, 19
  • [6] Integrative Analysis of Bulk RNA-Seq and Single-Cell RNA-Seq Unveils Novel Prognostic Biomarkers in Multiple Myeloma
    Zhao, Jing
    Wang, Xiaoning
    Zhu, Huachao
    Wei, Suhua
    Zhang, Hailing
    Ma, Le
    He, Pengcheng
    BIOMOLECULES, 2022, 12 (12)
  • [7] A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples
    Hou, Wenpin
    Ji, Zhicheng
    Chen, Zeyu
    Wherry, E. John
    Hicks, Stephanie C.
    Ji, Hongkai
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [8] A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples
    Wenpin Hou
    Zhicheng Ji
    Zeyu Chen
    E. John Wherry
    Stephanie C. Hicks
    Hongkai Ji
    Nature Communications, 14
  • [9] A test metric for assessing single-cell RNA-seq batch correction
    Buettner, Maren
    Miao, Zhichao
    Wolf, F. Alexander
    Teichmann, Sarah A.
    Theis, Fabian J.
    NATURE METHODS, 2019, 16 (01) : 43 - +
  • [10] A test metric for assessing single-cell RNA-seq batch correction
    Maren Büttner
    Zhichao Miao
    F. Alexander Wolf
    Sarah A. Teichmann
    Fabian J. Theis
    Nature Methods, 2019, 16 : 43 - 49