STRONGLY J-N-COHERENT RINGS

被引:0
|
作者
Zhu, Zhanmin [1 ]
机构
[1] Jiaxing Univ, Coll Data Sci, Dept Math, Jiaxing 314001, Zhejiang, Peoples R China
关键词
Strongly J-n- injective module; strongly J-n- flat module; strongly J-n- coherent ring; J-n- semihereditary ring; FLAT; SEMIHEREDITARY; MODULES;
D O I
10.24330/ieja.1411161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. Let R be a ring and n a fixed positive integer. A right R-module M is called strongly J-n-injective if every R-homomorphism from an n-generated small submodule of a free right R-module F to M extends to a homomorphism of F to M; a right R-module V is said to be strongly J-n-flat, if for every ngenerated small submodule T of a free left R-module F, the canonical map V 0 T -> V 0 F is monic; a ring R is called left strongly J-n-coherent if every n-generated small submodule of a free left R-module is finitely presented; a ring R is said to be left J-n-semihereditary if every n-generated small left ideal of R is projective. We study strongly J-n-injective modules, strongly J-n-flat modules and left strongly J-n-coherent rings. Using the concepts of strongly J-n-injectivity and strongly J-n-flatness of modules, we also present some characterizations of strongly J-n-coherent rings and J-n-semihereditary rings.
引用
收藏
页码:134 / 156
页数:23
相关论文
共 50 条
  • [21] n-X-COHERENT RINGS
    Bennis, Driss
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2010, 7 : 128 - 139
  • [22] (n, d)-Injective covers, n-coherent rings, and (n, d)-rings
    Li, Weiqing
    Ouyang, Baiyu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (02) : 289 - 304
  • [23] (n, d)-Injective covers, n-coherent rings, and (n, d)-rings
    Weiqing Li
    Baiyu Ouyang
    Czechoslovak Mathematical Journal, 2014, 64 : 289 - 304
  • [24] Some results on n-coherent rings, n-hereditary rings and n-regular rings
    Zhu Z.
    Boletín de la Sociedad Matemática Mexicana, 2018, 24 (1) : 81 - 94
  • [25] ON n-SEMIHEREDITARY AND n-COHERENT RINGS
    Zhang, Xiaoxiang
    Chen, Jianlong
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2007, 1 : 1 - 10
  • [26] n-coherent rings in terms of complexes
    Lu Bo
    Liu Zhongkui
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (03): : 521 - 533
  • [27] I-n-Coherent Rings, I-n-Semihereditary Rings, and I-Regular Rings
    Zhu Zhanmin
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 66 (06) : 857 - 883
  • [28] STRONGLY J-CLEAN MATRICES OVER LOCAL RINGS
    Chen, Huanyin
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (04) : 1352 - 1362
  • [29] I-n-Coherent Rings, I-n-Semihereditary Rings, and I-Regular Rings
    Zhu Zhanmin
    Ukrainian Mathematical Journal, 2014, 66 : 857 - 883
  • [30] On (m, n)-injective modules and (m, n)-coherent rings
    Zhang, XX
    Chen, JL
    Zhang, J
    ALGEBRA COLLOQUIUM, 2005, 12 (01) : 149 - 160