(n, d)-Injective covers, n-coherent rings, and (n, d)-rings

被引:6
|
作者
Li, Weiqing [1 ]
Ouyang, Baiyu [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Key Lab High Performance Comp & Stochast Informat, Minist Educ China, Changsha 410081, Hunan, Peoples R China
关键词
cover; envelope; n-coherent ring; (n; d)-injective; d)-ring; MODULES;
D O I
10.1007/s10587-014-0101-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that a ring R is left Noetherian if and only if every left R-module has an injective (pre)cover. We show that (1) if R is a right n-coherent ring, then every right R-module has an (n, d)-injective (pre)cover; (2) if R is a ring such that every (n, 0)-injective right R-module is n-pure extending, and if every right R-module has an (n, 0)-injective cover, then R is right n-coherent. As applications of these results, we give some characterizations of (n, d)-rings, von Neumann regular rings and semisimple rings.
引用
收藏
页码:289 / 304
页数:16
相关论文
共 50 条
  • [1] (n, d)-Injective covers, n-coherent rings, and (n, d)-rings
    Weiqing Li
    Baiyu Ouyang
    Czechoslovak Mathematical Journal, 2014, 64 : 289 - 304
  • [2] On n-Coherent Rings and (n, d)-Injective Modules
    Zhang, Dongdong
    Ouyang, Baiyu
    ALGEBRA COLLOQUIUM, 2015, 22 (02) : 349 - 360
  • [3] ON φ-( n, d ) RINGS AND φ- n-COHERENT RINGS
    El Haddaoui, Younes
    Kim, Hwankoo
    Mahdou, Najib
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (03): : 623 - 642
  • [4] On n-coherent rings and (n, d)-rings
    Zhou, DX
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (06) : 2425 - 2441
  • [5] ON G- ( n, d )-RINGS AND n-COHERENT RINGS
    Li, Weiqing
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2025, 37 : 147 - 178
  • [6] Some results on (n, d)-injective modules, (n, d)-flat modules and n-coherent rings
    Zhu, Zhanmin
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2015, 56 (04): : 505 - 513
  • [7] n-coherent rings
    Lee, SB
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (03) : 1119 - 1126
  • [8] On n-coherent rings
    Chen, JL
    Ding, NQ
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (10) : 3211 - 3216
  • [9] N-coherent rings and modules
    Dobbs, DE
    Kabbaj, SE
    Mahdou, N
    COMMUTATIVE RING THEORY, 1997, 185 : 269 - 281
  • [10] ON n-COHERENT RINGS, n-HEREDITARY RINGS AND n-REGULAR RINGS
    Zhu, Z.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (04): : 251 - 267