STRONGLY J-N-COHERENT RINGS

被引:0
|
作者
Zhu, Zhanmin [1 ]
机构
[1] Jiaxing Univ, Coll Data Sci, Dept Math, Jiaxing 314001, Zhejiang, Peoples R China
关键词
Strongly J-n- injective module; strongly J-n- flat module; strongly J-n- coherent ring; J-n- semihereditary ring; FLAT; SEMIHEREDITARY; MODULES;
D O I
10.24330/ieja.1411161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. Let R be a ring and n a fixed positive integer. A right R-module M is called strongly J-n-injective if every R-homomorphism from an n-generated small submodule of a free right R-module F to M extends to a homomorphism of F to M; a right R-module V is said to be strongly J-n-flat, if for every ngenerated small submodule T of a free left R-module F, the canonical map V 0 T -> V 0 F is monic; a ring R is called left strongly J-n-coherent if every n-generated small submodule of a free left R-module is finitely presented; a ring R is said to be left J-n-semihereditary if every n-generated small left ideal of R is projective. We study strongly J-n-injective modules, strongly J-n-flat modules and left strongly J-n-coherent rings. Using the concepts of strongly J-n-injectivity and strongly J-n-flatness of modules, we also present some characterizations of strongly J-n-coherent rings and J-n-semihereditary rings.
引用
收藏
页码:134 / 156
页数:23
相关论文
共 50 条
  • [31] On n-Coherent Rings and (n, d)-Injective Modules
    Zhang, Dongdong
    Ouyang, Baiyu
    ALGEBRA COLLOQUIUM, 2015, 22 (02) : 349 - 360
  • [32] HOMOLOGICAL DIMENSIONS OF N0-COHERENT RINGS
    JENSEN, CU
    MATHEMATICA SCANDINAVICA, 1967, 20 (01) : 55 - &
  • [33] Modules Whose Endomorphism Rings Are (m, n)-Coherent
    Luo, Xiaoqiang
    Mao, Lixin
    ALGEBRA COLLOQUIUM, 2019, 26 (02) : 231 - 242
  • [34] Slightly (m, n)-coherent rings and (m,n)-homological dimensions
    Zhao, Renyu
    Li, Ruilin
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (11) : 4809 - 4823
  • [35] (m, n)-Injective and (m, n)-coherent endomorphism rings of modules
    Mao, Lixin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (03)
  • [36] ON n-COPRESENTED MODULES AND n-CO-COHERENT RINGS
    Bennis, Driss
    Bouzraa, Habib
    Kaed, Abdul-Qawe
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2012, 12 : 162 - 174
  • [37] Y Some characterizations of coherent rings in terms of strongly FP-injective modules
    Chen, Mingzhao
    Kim, Hwankoo
    Wang, Fanggui
    Zhang, Xiaolei
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (07) : 2857 - 2871
  • [38] COHERENT RINGS
    LENZING, H
    MATHEMATISCHE ZEITSCHRIFT, 1970, 114 (03) : 201 - &
  • [39] COHERENT RINGS
    SOUBLIN, JP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 267 (04): : 183 - &
  • [40] On τ-coherent rings
    Masaike, Kanzo
    RING THEORY 2007, PROCEEDINGS, 2009, : 240 - 247