Hybrid Symbolic-Numeric and Numerically-Assisted Symbolic Integration

被引:0
|
作者
Iravanian, Shahriar [1 ]
Gowda, Shashi [2 ]
Rackauckas, Chris [2 ]
机构
[1] Emory Univ, Atlanta, GA 30322 USA
[2] MIT, Boston, MA USA
关键词
symbolic integration; symbolic-numeric computation; sparse regression;
D O I
10.1145/3666000.3669714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Most computer algebra systems (CAS) support symbolic integration using either algebraic or heuristic methods. This paper presents HYINT, a hybrid (symbolic-numeric) method to calculate the indefinite integrals of univariate expressions. Like the Risch-Norman algorithm, the symbolic part of HYINT generates an ansatz constituted of multiple candidate terms generated in parallel. The ansatz generator uses a combination of table lookup of integration rules and algebraic manipulations. The numeric part filters the candidate terms over the complex field and applies sparse regression, a component of the Sparse Identification of Nonlinear Dynamics (SINDy) technique, to find the coefficients of the terms in the ansatz. HYINT covers a larger range of potential integrals compared to the Risch-Norman algorithm. Moreover, the form of the final integral is similar to the integrand and consistent with what the users expect. The primary motivation for this work is to add symbolic integration functionality to a modern CAS (the symbolic manipulation packages of SciML, the Scientific Machine Learning ecosystem of the Julia programming language), which is designed for numerical and machine learning applications. We show that this system can solve many common integration problems using only a few dozen basic integration rules. We also discuss numerically-assisted symbolic integration, where HYINT acts as an ansatz generator for other symbolic integration packages.
引用
收藏
页码:410 / 418
页数:9
相关论文
共 50 条
  • [41] Symbolic-numeric Computation of Implicit Riquier Bases for PDE
    Wu, Wenyuan
    Reid, Greg
    ISSAC 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2007, : 377 - 385
  • [42] MathATESAT: A Symbolic-Numeric Environment in Astrodynamics and Celestial Mechanics
    Felix San-Juan, Juan
    Maria Lopez, Luis
    Lopez, Rosario
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2011, PT II, 2011, 6783 : 436 - 449
  • [43] On the modular symbolic-numeric implementation of extended Kalman filters
    Sorlie, JA
    PROCEEDINGS OF THE 1996 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-AIDED CONTROL SYSTEM DESIGN, 1996, : 510 - 515
  • [44] An automatic symbolic-numeric Taylor series ODE solver
    Dupée, BJ
    Davenport, JH
    CASC'99: COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 1999, : 37 - 50
  • [45] Symbolic-numeric investigations for stability analysis of Lagrange systems
    Gutnik, SA
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 57 (3-5) : 211 - 215
  • [46] Exact symbolic-numeric computation of planar algebraic curves
    Berberich, Eric
    Emeliyanenko, Pavel
    Kobel, Alexander
    Sagraloff, Michael
    THEORETICAL COMPUTER SCIENCE, 2013, 491 : 1 - 32
  • [47] Efficient Hybrid Symbolic-Numeric Computational Method for Piecewise Linear Systems With Coulomb Friction
    Shahhosseini, Amir
    Tien, Meng-Hsuan
    D'Souza, Kiran
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (07):
  • [48] A Sage Package for the Symbolic-Numeric Factorization of Linear Differential Operators
    Goyer, Alexandre
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2021, 55 (02): : 44 - 48
  • [49] Symbolic-Numeric Investigation of the Aerodynamic Forces Influence on Satellite Dynamics
    Gutnik, Sergey A.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2011, 6885 : 192 - 199
  • [50] A Symbolic-Numeric Method for Solving the Poisson Equation in Polar Coordinates
    Vorozhtsov, Evgenii V.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2023, 2023, 14139 : 330 - 349