Hybrid Symbolic-Numeric and Numerically-Assisted Symbolic Integration

被引:0
|
作者
Iravanian, Shahriar [1 ]
Gowda, Shashi [2 ]
Rackauckas, Chris [2 ]
机构
[1] Emory Univ, Atlanta, GA 30322 USA
[2] MIT, Boston, MA USA
关键词
symbolic integration; symbolic-numeric computation; sparse regression;
D O I
10.1145/3666000.3669714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Most computer algebra systems (CAS) support symbolic integration using either algebraic or heuristic methods. This paper presents HYINT, a hybrid (symbolic-numeric) method to calculate the indefinite integrals of univariate expressions. Like the Risch-Norman algorithm, the symbolic part of HYINT generates an ansatz constituted of multiple candidate terms generated in parallel. The ansatz generator uses a combination of table lookup of integration rules and algebraic manipulations. The numeric part filters the candidate terms over the complex field and applies sparse regression, a component of the Sparse Identification of Nonlinear Dynamics (SINDy) technique, to find the coefficients of the terms in the ansatz. HYINT covers a larger range of potential integrals compared to the Risch-Norman algorithm. Moreover, the form of the final integral is similar to the integrand and consistent with what the users expect. The primary motivation for this work is to add symbolic integration functionality to a modern CAS (the symbolic manipulation packages of SciML, the Scientific Machine Learning ecosystem of the Julia programming language), which is designed for numerical and machine learning applications. We show that this system can solve many common integration problems using only a few dozen basic integration rules. We also discuss numerically-assisted symbolic integration, where HYINT acts as an ansatz generator for other symbolic integration packages.
引用
收藏
页码:410 / 418
页数:9
相关论文
共 50 条
  • [31] A Symbolic-Numeric Approach for Parametrizing Ruled Surfaces
    Perez-Diaz, Sonia
    Shen, Li-Yong
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (03) : 799 - 820
  • [32] A symbolic-numeric approach to an electric field problem
    Jeffrey, David J.
    Ilie, Silvana
    Gardiner, James M.
    Campbell, Steven W.
    SYMBOLIC-NUMERIC COMPUTATION, 2007, : 349 - +
  • [33] A Symbolic-Numeric Approach for Parametrizing Ruled Surfaces
    PéREZ-DíAZ Sonia
    SHEN Li-Yong
    Journal of Systems Science & Complexity, 2020, 33 (03) : 799 - 820
  • [34] PLANT/CONTROLLER DESIGN INTEGRATION FOR H-2 CONTROL BASED ON SYMBOLIC-NUMERIC HYBRID OPTIMIZATION
    Kanno, Masaaki
    Hara, Shinji
    Anai, Hirokazu
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2011, 11 (03) : 281 - 305
  • [35] Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables
    Melczer, Stephen
    Salvy, Bruno
    PROCEEDINGS OF THE 2016 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC 2016), 2016, : 333 - 340
  • [36] Analyzing Bilinear Systems Using a New Hybrid Symbolic-Numeric Computational Method
    Tien, Meng-Hsuan
    D'Souza, Kiran
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2019, 141 (03):
  • [37] Symbolic-numeric computation of implicit riquier bases for PDE
    Wu, Wenyuan
    Reid, Greg
    Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC, 2007, : 377 - 386
  • [38] On symbolic-numeric solving of sine-polynomial equations
    Maignan, A
    JOURNAL OF COMPLEXITY, 2000, 16 (01) : 274 - 285
  • [39] A symbolic-numeric approach to tube modeling in CAD systems
    Sobottka, Gerrit
    Weber, Andreas
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, PROCEEDINGS, 2006, 4194 : 279 - 283
  • [40] Symbolic-numeric investigations for stability analysis of satellite systems
    Gutnik, SA
    CASC'99: COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 1999, : 223 - 228