Hybrid Symbolic-Numeric and Numerically-Assisted Symbolic Integration

被引:0
|
作者
Iravanian, Shahriar [1 ]
Gowda, Shashi [2 ]
Rackauckas, Chris [2 ]
机构
[1] Emory Univ, Atlanta, GA 30322 USA
[2] MIT, Boston, MA USA
关键词
symbolic integration; symbolic-numeric computation; sparse regression;
D O I
10.1145/3666000.3669714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Most computer algebra systems (CAS) support symbolic integration using either algebraic or heuristic methods. This paper presents HYINT, a hybrid (symbolic-numeric) method to calculate the indefinite integrals of univariate expressions. Like the Risch-Norman algorithm, the symbolic part of HYINT generates an ansatz constituted of multiple candidate terms generated in parallel. The ansatz generator uses a combination of table lookup of integration rules and algebraic manipulations. The numeric part filters the candidate terms over the complex field and applies sparse regression, a component of the Sparse Identification of Nonlinear Dynamics (SINDy) technique, to find the coefficients of the terms in the ansatz. HYINT covers a larger range of potential integrals compared to the Risch-Norman algorithm. Moreover, the form of the final integral is similar to the integrand and consistent with what the users expect. The primary motivation for this work is to add symbolic integration functionality to a modern CAS (the symbolic manipulation packages of SciML, the Scientific Machine Learning ecosystem of the Julia programming language), which is designed for numerical and machine learning applications. We show that this system can solve many common integration problems using only a few dozen basic integration rules. We also discuss numerically-assisted symbolic integration, where HYINT acts as an ansatz generator for other symbolic integration packages.
引用
收藏
页码:410 / 418
页数:9
相关论文
共 50 条
  • [21] Generating exact nonlinear ranking functions by symbolic-numeric hybrid method
    Liyong Shen
    Min Wu
    Zhengfeng Yang
    Zhenbing Zeng
    Journal of Systems Science and Complexity, 2013, 26 : 291 - 301
  • [22] Symbolic-numeric circuit analysis or symbolic circuit analysis with online approximations
    Technion-Israel Inst of Technology, Haifa, Israel
    IEEE Trans Circuits Syst I Fundam Theor Appl, 1 (197-207):
  • [23] Generation and verification of algorithms for symbolic-numeric processing
    Kocbach, L
    Liska, R
    JOURNAL OF SYMBOLIC COMPUTATION, 1998, 25 (03) : 367 - 382
  • [24] A Symbolic-Numeric Approach for Parametrizing Ruled Surfaces
    Sonia Pérez-Díaz
    Li-Yong Shen
    Journal of Systems Science and Complexity, 2020, 33 : 799 - 820
  • [25] Symbolic-numeric sparse interpolation of multivariate polynomials
    Giesbrecht, Mark
    Labahn, George
    Lee, Wen-shin
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (08) : 943 - 959
  • [26] Hybrid Symbolic-Numeric Methods for the Solution of Polynomial Systems [Tutorial Overview]
    Szanto, Agnes
    ISSAC 2011: PROCEEDINGS OF THE 36TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2011, : 9 - 9
  • [27] Generating exact nonlinear ranking functions by symbolic-numeric hybrid method
    Shen Liyong
    Wu Min
    Yang Zhengfeng
    Zeng Zhenbing
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2013, 26 (02) : 291 - 301
  • [28] Symbolic-numeric cooperation in an open science project
    San-Juan, Juan Felix
    Lopez, Rosario
    Lopez, Luis Maria
    Perez, Ivan
    12TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2010), 2011, : 37 - 46
  • [29] GENERATING EXACT NONLINEAR RANKING FUNCTIONS BY SYMBOLIC-NUMERIC HYBRID METHOD
    SHEN Liyong
    WU Min
    YANG Zhengfeng
    ZENG Zhenbing
    JournalofSystemsScience&Complexity, 2013, 26 (02) : 291 - 301
  • [30] Symbolic-numeric analysis of flexible multibody systems
    Claus, H
    Schiehlen, W
    MECHANICS OF STRUCTURES AND MACHINES, 2002, 30 (01): : 1 - 30