Counting spanning subgraphs in dense hypergraphs

被引:0
|
作者
Montgomery, Richard [1 ]
Pavez-Signe, Matias [2 ]
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry, England
[2] Univ Chile, Ctr Math Modeling, CNRS IRL2807, Santiago, Chile
基金
欧洲研究理事会;
关键词
Degree conditions; spanning subgraphs; hypergraphs; HAMILTON L-CYCLES; DIRAC;
D O I
10.1017/S0963548324000178
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a simple method to estimate the number of distinct copies of some classes of spanning subgraphs in hypergraphs with a high minimum degree. In particular, for each $k\geq 2$ and $1\leq \ell \leq k-1$ , we show that every $k$ -graph on $n$ vertices with minimum codegree at least \begin{equation*} \left \{\begin {array}{l@{\quad}l} \left (\dfrac {1}{2}+o(1)\right )n & \text { if }(k-\ell )\mid k,\\[5pt] \left (\dfrac {1}{\lceil \frac {k}{k-\ell }\rceil (k-\ell )}+o(1)\right )n & \text { if }(k-\ell )\nmid k, \end {array} \right . \end{equation*} contains $\exp\!(n\log n-\Theta (n))$ Hamilton $\ell$ -cycles as long as $(k-\ell )\mid n$ . When $(k-\ell )\mid k$ , this gives a simple proof of a result of Glock, Gould, Joos, K & uuml;hn, and Osthus, while when $(k-\ell )\nmid k$ , this gives a weaker count than that given by Ferber, Hardiman, and Mond, or when $\ell \lt k/2$ , by Ferber, Krivelevich, and Sudakov, but one that holds for an asymptotically optimal minimum codegree bound.
引用
收藏
页码:729 / 741
页数:13
相关论文
共 50 条
  • [41] Counting unbranched subgraphs
    J Algebraic Combinatorics, 2 (157-160):
  • [42] Spanning trees and spanning Eulerian subgraphs with small degrees
    Hasanvand, Morteza
    DISCRETE MATHEMATICS, 2015, 338 (08) : 1317 - 1321
  • [43] Counting acyclic hypergraphs
    王建方
    李海珠
    ScienceinChina,SerA., 2001, Ser.A.2001 (02) : 220 - 224
  • [44] Counting acyclic hypergraphs
    王建方
    李海珠
    Science China Mathematics, 2001, (02) : 220 - 224
  • [45] Counting acyclic hypergraphs
    Wang, JF
    Li, HZ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (02): : 220 - 224
  • [46] Covering small subgraphs of (hyper)tournaments with spanning acyclic subgraphs
    Yuster, Raphael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04): : 1 - 15
  • [47] Counting acyclic hypergraphs
    Jianfang Wang
    Haizhu Li
    Science in China Series A: Mathematics, 2001, 44 : 220 - 224
  • [48] On Finding Dense Subgraphs
    Khuller, Samir
    Saha, Barna
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 : 597 - 608
  • [49] On Even-Degree Subgraphs of Linear Hypergraphs
    Dellamonica, D., Jr.
    Haxell, P.
    Luczak, T.
    Mubayi, D.
    Nagle, B.
    Person, Y.
    Roedl, V.
    Schacht, M.
    Verstraete, J.
    COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (1-2): : 113 - 127
  • [50] Subgraphs in Non-uniform Random Hypergraphs
    Dewar, Megan
    Healy, John
    Perez-Gimenez, Xavier
    Pralat, Pawel
    Proos, John
    Reiniger, Benjamin
    Ternovsky, Kirill
    ALGORITHMS AND MODELS FOR THE WEB GRAPH, WAW 2016, 2016, 10088 : 140 - 151