Counting spanning subgraphs in dense hypergraphs

被引:0
|
作者
Montgomery, Richard [1 ]
Pavez-Signe, Matias [2 ]
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry, England
[2] Univ Chile, Ctr Math Modeling, CNRS IRL2807, Santiago, Chile
基金
欧洲研究理事会;
关键词
Degree conditions; spanning subgraphs; hypergraphs; HAMILTON L-CYCLES; DIRAC;
D O I
10.1017/S0963548324000178
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a simple method to estimate the number of distinct copies of some classes of spanning subgraphs in hypergraphs with a high minimum degree. In particular, for each $k\geq 2$ and $1\leq \ell \leq k-1$ , we show that every $k$ -graph on $n$ vertices with minimum codegree at least \begin{equation*} \left \{\begin {array}{l@{\quad}l} \left (\dfrac {1}{2}+o(1)\right )n & \text { if }(k-\ell )\mid k,\\[5pt] \left (\dfrac {1}{\lceil \frac {k}{k-\ell }\rceil (k-\ell )}+o(1)\right )n & \text { if }(k-\ell )\nmid k, \end {array} \right . \end{equation*} contains $\exp\!(n\log n-\Theta (n))$ Hamilton $\ell$ -cycles as long as $(k-\ell )\mid n$ . When $(k-\ell )\mid k$ , this gives a simple proof of a result of Glock, Gould, Joos, K & uuml;hn, and Osthus, while when $(k-\ell )\nmid k$ , this gives a weaker count than that given by Ferber, Hardiman, and Mond, or when $\ell \lt k/2$ , by Ferber, Krivelevich, and Sudakov, but one that holds for an asymptotically optimal minimum codegree bound.
引用
收藏
页码:729 / 741
页数:13
相关论文
共 50 条
  • [21] Packing of rigid spanning subgraphs and spanning trees
    Cheriyan, Joseph
    de Gevigney, Olivier Durand
    Szigeti, Zoltan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 105 : 17 - 25
  • [22] Hypergraphs and their subgraphs in modelling and investigation of robots
    Buchacz, A
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 157 : 37 - 44
  • [23] Two-regular subgraphs of hypergraphs
    Mubayi, Dhruv
    Verstraete, Jacques
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (03) : 643 - 655
  • [24] Isomorphic edge disjoint subgraphs of hypergraphs
    Horn, Paul
    Koubek, Vaclav
    Rodl, Vojtech
    RANDOM STRUCTURES & ALGORITHMS, 2016, 48 (04) : 767 - 793
  • [25] SPANNING SUBGRAPHS OF EULERIAN GRAPHS
    BOESCH, FT
    SUFFEL, C
    TINDELL, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (02): : A302 - A302
  • [26] SPANNING SUBGRAPHS WITH SPECIFIED VALENCIES
    TUTTE, WT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (03): : A391 - A391
  • [27] MAXIMUM HYPERGRAPHS WITHOUT REGULAR SUBGRAPHS
    Kim, Jaehoon
    Kostochka, Alexandr V.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (01) : 151 - 166
  • [28] The number of cliques in hypergraphs with forbidden subgraphs
    Basu, Ayush
    Rodl, Vojtech
    Zhao, Yi
    DISCRETE MATHEMATICS, 2025, 348 (05)
  • [29] SPANNING SUBGRAPHS OF EMBEDDED GRAPHS
    SKOVIERA, M
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1992, 42 (02) : 235 - 239
  • [30] Triangle-Free Subgraphs of Hypergraphs
    Nie, Jiaxi
    Spiro, Sam
    Verstraete, Jacques
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2555 - 2570