Counting spanning subgraphs in dense hypergraphs

被引:0
|
作者
Montgomery, Richard [1 ]
Pavez-Signe, Matias [2 ]
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry, England
[2] Univ Chile, Ctr Math Modeling, CNRS IRL2807, Santiago, Chile
基金
欧洲研究理事会;
关键词
Degree conditions; spanning subgraphs; hypergraphs; HAMILTON L-CYCLES; DIRAC;
D O I
10.1017/S0963548324000178
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a simple method to estimate the number of distinct copies of some classes of spanning subgraphs in hypergraphs with a high minimum degree. In particular, for each $k\geq 2$ and $1\leq \ell \leq k-1$ , we show that every $k$ -graph on $n$ vertices with minimum codegree at least \begin{equation*} \left \{\begin {array}{l@{\quad}l} \left (\dfrac {1}{2}+o(1)\right )n & \text { if }(k-\ell )\mid k,\\[5pt] \left (\dfrac {1}{\lceil \frac {k}{k-\ell }\rceil (k-\ell )}+o(1)\right )n & \text { if }(k-\ell )\nmid k, \end {array} \right . \end{equation*} contains $\exp\!(n\log n-\Theta (n))$ Hamilton $\ell$ -cycles as long as $(k-\ell )\mid n$ . When $(k-\ell )\mid k$ , this gives a simple proof of a result of Glock, Gould, Joos, K & uuml;hn, and Osthus, while when $(k-\ell )\nmid k$ , this gives a weaker count than that given by Ferber, Hardiman, and Mond, or when $\ell \lt k/2$ , by Ferber, Krivelevich, and Sudakov, but one that holds for an asymptotically optimal minimum codegree bound.
引用
收藏
页码:729 / 741
页数:13
相关论文
共 50 条
  • [31] ON FINDING SPANNING EULERIAN SUBGRAPHS
    RICHEY, MB
    PARKER, RG
    RARDIN, RL
    NAVAL RESEARCH LOGISTICS, 1985, 32 (03) : 443 - 455
  • [32] Reconfiguring Spanning and Induced Subgraphs
    Hanaka, Tesshu
    Ito, Takehiro
    Mizuta, Haruka
    Moore, Benjamin
    Nishimura, Naomi
    Subramanya, Vijay
    Suzuki, Akira
    Vaidyanathan, Krishna
    COMPUTING AND COMBINATORICS (COCOON 2018), 2018, 10976 : 428 - 440
  • [33] Spanning subgraphs of random graphs
    Riordan, O
    COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (02): : 125 - 148
  • [34] SPANNING SUBGRAPHS OF RANDOM GRAPHS
    ALON, N
    FUREDI, Z
    GRAPHS AND COMBINATORICS, 1992, 8 (01) : 91 - 94
  • [35] Reconfiguring spanning and induced subgraphs
    Hanaka, Tesshu
    Ito, Takehiro
    Mizuta, Haruka
    Moore, Benjamin
    Nishimura, Naomi
    Subramanya, Vijay
    Suzuki, Akira
    Vaidyanathan, Krishna
    THEORETICAL COMPUTER SCIENCE, 2020, 806 : 553 - 566
  • [36] Triangle-Free Subgraphs of Hypergraphs
    Jiaxi Nie
    Sam Spiro
    Jacques Verstraëte
    Graphs and Combinatorics, 2021, 37 : 2555 - 2570
  • [37] SPANNING EULERIAN SUBGRAPHS AND MATCHINGS
    CATLIN, PA
    DISCRETE MATHEMATICS, 1989, 76 (02) : 95 - 116
  • [38] Maxmaxflow and Counting Subgraphs
    Jackson, Bill
    Sokal, Alan D.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [39] Counting Unbranched Subgraphs
    David Ruelle
    Journal of Algebraic Combinatorics, 1999, 9 : 157 - 160
  • [40] Counting unbranched subgraphs
    Ruelle, D
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1999, 9 (02) : 157 - 160