Counting spanning subgraphs in dense hypergraphs

被引:0
|
作者
Montgomery, Richard [1 ]
Pavez-Signe, Matias [2 ]
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry, England
[2] Univ Chile, Ctr Math Modeling, CNRS IRL2807, Santiago, Chile
基金
欧洲研究理事会;
关键词
Degree conditions; spanning subgraphs; hypergraphs; HAMILTON L-CYCLES; DIRAC;
D O I
10.1017/S0963548324000178
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a simple method to estimate the number of distinct copies of some classes of spanning subgraphs in hypergraphs with a high minimum degree. In particular, for each $k\geq 2$ and $1\leq \ell \leq k-1$ , we show that every $k$ -graph on $n$ vertices with minimum codegree at least \begin{equation*} \left \{\begin {array}{l@{\quad}l} \left (\dfrac {1}{2}+o(1)\right )n & \text { if }(k-\ell )\mid k,\\[5pt] \left (\dfrac {1}{\lceil \frac {k}{k-\ell }\rceil (k-\ell )}+o(1)\right )n & \text { if }(k-\ell )\nmid k, \end {array} \right . \end{equation*} contains $\exp\!(n\log n-\Theta (n))$ Hamilton $\ell$ -cycles as long as $(k-\ell )\mid n$ . When $(k-\ell )\mid k$ , this gives a simple proof of a result of Glock, Gould, Joos, K & uuml;hn, and Osthus, while when $(k-\ell )\nmid k$ , this gives a weaker count than that given by Ferber, Hardiman, and Mond, or when $\ell \lt k/2$ , by Ferber, Krivelevich, and Sudakov, but one that holds for an asymptotically optimal minimum codegree bound.
引用
收藏
页码:729 / 741
页数:13
相关论文
共 50 条
  • [1] Optimal spread for spanning subgraphs of Dirac hypergraphs
    Kelly, Tom
    Muyesser, Alp
    Pokrovskiy, Alexey
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 169 : 507 - 541
  • [2] Complete Partite subgraphs in dense hypergraphs
    Roedl, Vojtech
    Schacht, Mathias
    RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (04) : 557 - 573
  • [3] On Graph-Lagrangians of Hypergraphs Containing Dense Subgraphs
    Qingsong Tang
    Yuejian Peng
    Xiangde Zhang
    Cheng Zhao
    Journal of Optimization Theory and Applications, 2014, 163 : 31 - 56
  • [4] On Graph-Lagrangians of Hypergraphs Containing Dense Subgraphs
    Tang, Qingsong
    Peng, Yuejian
    Zhang, Xiangde
    Zhao, Cheng
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (01) : 31 - 56
  • [5] Embedding spanning subgraphs in uniformly dense and inseparable graphs
    Ebsen, Oliver
    Maesaka, Giulia S.
    Reiher, Christian
    Schacht, Mathias
    Schuelke, Bjarne
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (04) : 1077 - 1096
  • [6] Uniform generation of spanning regular subgraphs of a dense graph
    Gao, Pu
    Greenhill, Catherine
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (04):
  • [7] Counting subgraphs in quasi-random 4-uniform hypergraphs
    Rödl, V
    Skokan, J
    RANDOM STRUCTURES & ALGORITHMS, 2005, 26 (1-2) : 160 - 203
  • [8] Generating functions and counting formulas for spanning trees and forests in hypergraphs
    Liu, Jiuqiang
    Zhang, Shenggui
    Yu, Guihai
    ADVANCES IN APPLIED MATHEMATICS, 2024, 155
  • [9] Almost-spanning subgraphs with bounded degree in dense graphs
    Ishigami, Y
    EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (05) : 583 - 612
  • [10] Rainbow spanning trees in random subgraphs of dense regular graphs
    Bradshaw, Peter
    DISCRETE MATHEMATICS, 2024, 347 (06)