Vinogradov's three primes theorem in the intersection of multiple Piatetski-Shapiro sets

被引:0
|
作者
Li, Xiaotian [1 ]
Li, Jinjiang [1 ]
Zhang, Min [2 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
来源
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS | 2024年
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Piatetski-Shapiro sets; Exponential sum; Asymptotic formula; NUMBERS;
D O I
10.1007/s13226-024-00604-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Vinogradov's three primes theorem indicates that, for every sufficiently large odd integer N, the equation N=p1+p2+p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=p_1+p_2+p_3$$\end{document} is solvable in prime variables p1,p2,p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3$$\end{document}. In this paper, it is proved that Vinogradov's three primes theorem still holds with three prime variables constrained in the intersection of multiple Piatetski-Shapiro sequences.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] AN ADDITIVE PROBLEM INVOLVING PIATETSKI-SHAPIRO PRIMES
    Wang, Xinna
    Cai, Yingchun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (05) : 1359 - 1378
  • [32] SMALL GAPS BETWEEN THE PIATETSKI-SHAPIRO PRIMES
    Li, Hongze
    Pan, Hao
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (12) : 8463 - 8484
  • [33] Diophantine inequalities over Piatetski-Shapiro primes
    Huang, Jing
    Zhai, Wenguang
    Zhang, Deyu
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (03) : 749 - 770
  • [34] Diophantine approximation over Piatetski-Shapiro primes
    Li, Taiyu
    Liu, Huafeng
    JOURNAL OF NUMBER THEORY, 2020, 211 : 184 - 198
  • [35] Almost primes in generalized Piatetski-Shapiro sequences
    Qi, Jinyun
    Xu, Zhefeng
    AIMS MATHEMATICS, 2022, 7 (08): : 14154 - 14162
  • [36] An Additive Problem with Piatetski-Shapiro Primes and Almost-Primes
    T. P. Peneva
    Monatshefte für Mathematik, 2003, 140 : 119 - 133
  • [37] A remark on the Piatetski-Shapiro-Vinogradov theorem
    Cai, YC
    ACTA ARITHMETICA, 2003, 110 (01) : 73 - 75
  • [38] An additive problem with Piatetski-Shapiro primes and almost-primes
    Peneva, TP
    MONATSHEFTE FUR MATHEMATIK, 2003, 140 (02): : 119 - 133
  • [39] An additive problem over Piatetski-Shapiro primes and almost-primes
    Li, Jinjiang
    Zhang, Min
    Xue, Fei
    RAMANUJAN JOURNAL, 2022, 57 (04): : 1307 - 1333
  • [40] Roth-type Theorem for High-power System in Piatetski-Shapiro primes
    Zhang, Qingqing
    Zhang, Rui
    FRONTIERS OF MATHEMATICS, 2025, 20 (01): : 67 - 86