Vinogradov's three primes theorem in the intersection of multiple Piatetski-Shapiro sets

被引:0
|
作者
Li, Xiaotian [1 ]
Li, Jinjiang [1 ]
Zhang, Min [2 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
来源
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS | 2024年
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Piatetski-Shapiro sets; Exponential sum; Asymptotic formula; NUMBERS;
D O I
10.1007/s13226-024-00604-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Vinogradov's three primes theorem indicates that, for every sufficiently large odd integer N, the equation N=p1+p2+p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=p_1+p_2+p_3$$\end{document} is solvable in prime variables p1,p2,p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3$$\end{document}. In this paper, it is proved that Vinogradov's three primes theorem still holds with three prime variables constrained in the intersection of multiple Piatetski-Shapiro sequences.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Diophantine approximation by Piatetski-Shapiro primes
    Dimitrov, S. I.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (04): : 875 - 883
  • [22] On Hecke eigenvalues at Piatetski-Shapiro primes
    Baier, Stephan
    Zhao, Liangyi
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 : 175 - 201
  • [23] Piatetski-Shapiro primes in a Beatty sequence
    Guo, Victor Z.
    JOURNAL OF NUMBER THEORY, 2015, 156 : 317 - 330
  • [24] Diophantine approximation by Piatetski-Shapiro primes
    S. I. Dimitrov
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 875 - 883
  • [25] A Bombieri–Vinogradov-type result for exponential sums over Piatetski-Shapiro primes
    Stoyan Ivanov Dimitrov
    Lithuanian Mathematical Journal, 2022, 62 : 435 - 446
  • [26] A Bombieri-Vinogradov-type result for exponential sums over Piatetski-Shapiro primes
    Dimitrov, Stoyan Ivanov
    LITHUANIAN MATHEMATICAL JOURNAL, 2022, 62 (04) : 435 - 446
  • [27] Roth-type theorem for nonlinear equations in Piatetski-Shapiro primes
    Ren, Xiumin
    Sun, Yu-Chen
    Zhang, Qingqing
    Zhang, Rui
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2025, 21 (04) : 887 - 902
  • [28] ON THE PIATETSKI-SHAPIRO-VINOGRADOV THEOREM
    JIA, CH
    ACTA ARITHMETICA, 1995, 73 (01) : 1 - 28
  • [29] Diophantine inequalities over Piatetski-Shapiro primes
    Jing Huang
    Wenguang Zhai
    Deyu Zhang
    Frontiers of Mathematics in China, 2021, 16 : 749 - 770
  • [30] On the distribution of αp modulo one in the intersection of two Piatetski-Shapiro sets
    Li, Xiaotian
    Li, Jinjiang
    Zhang, Min
    RAMANUJAN JOURNAL, 2024, 65 (02): : 743 - 758