Vinogradov's three primes theorem in the intersection of multiple Piatetski-Shapiro sets

被引:0
|
作者
Li, Xiaotian [1 ]
Li, Jinjiang [1 ]
Zhang, Min [2 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
来源
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS | 2024年
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Piatetski-Shapiro sets; Exponential sum; Asymptotic formula; NUMBERS;
D O I
10.1007/s13226-024-00604-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Vinogradov's three primes theorem indicates that, for every sufficiently large odd integer N, the equation N=p1+p2+p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=p_1+p_2+p_3$$\end{document} is solvable in prime variables p1,p2,p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3$$\end{document}. In this paper, it is proved that Vinogradov's three primes theorem still holds with three prime variables constrained in the intersection of multiple Piatetski-Shapiro sequences.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] THE INTERSECTION OF PIATETSKI-SHAPIRO SEQUENCES
    Baker, Roger C.
    MATHEMATIKA, 2014, 60 (02) : 347 - 362
  • [12] Piatetski-Shapiro primes from almost primes
    Baker, Roger C.
    Banks, William D.
    Guo, Zhenyu V.
    Yeager, Aaron M.
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (03): : 357 - 370
  • [13] Almost primes in Piatetski-Shapiro sequences
    Guo, Victor Zhenyu
    AIMS MATHEMATICS, 2021, 6 (09): : 9536 - 9546
  • [14] On the Sum of Two Piatetski-Shapiro Primes
    MENG Xian-meng(School of Culture and Science
    数学季刊, 2004, (02) : 155 - 159
  • [15] An Additive Problem on Piatetski-Shapiro Primes
    Lu, Ya Ming
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (02) : 255 - 264
  • [16] Piatetski-Shapiro primes in arithmetic progressions
    Victor Zhenyu Guo
    Jinjiang Li
    Min Zhang
    The Ramanujan Journal, 2023, 60 : 677 - 692
  • [17] An Additive Problem on Piatetski-Shapiro Primes
    Ya Ming LU
    Acta Mathematica Sinica, 2018, 34 (02) : 255 - 264
  • [18] An Additive Problem on Piatetski-Shapiro Primes
    Ya Ming LU
    Acta Mathematica Sinica,English Series, 2018, (02) : 255 - 264
  • [19] Roth-type theorem for quadratic system in Piatetski-Shapiro primes
    Ren, Xiumin
    Zhang, Qingqing
    Zhang, Rui
    JOURNAL OF NUMBER THEORY, 2024, 257 : 1 - 23
  • [20] Piatetski-Shapiro primes in arithmetic progressions
    Guo, Victor Zhenyu
    Li, Jinjiang
    Zhang, Min
    RAMANUJAN JOURNAL, 2023, 60 (03): : 677 - 692