Vinogradov's three primes theorem in the intersection of multiple Piatetski-Shapiro sets

被引:0
|
作者
Li, Xiaotian [1 ]
Li, Jinjiang [1 ]
Zhang, Min [2 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
来源
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS | 2024年
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Piatetski-Shapiro sets; Exponential sum; Asymptotic formula; NUMBERS;
D O I
10.1007/s13226-024-00604-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Vinogradov's three primes theorem indicates that, for every sufficiently large odd integer N, the equation N=p1+p2+p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=p_1+p_2+p_3$$\end{document} is solvable in prime variables p1,p2,p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3$$\end{document}. In this paper, it is proved that Vinogradov's three primes theorem still holds with three prime variables constrained in the intersection of multiple Piatetski-Shapiro sequences.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] THE THREE PRIMES THEOREM WITH PRIMES IN THE INTERSECTION OF TWO PIATETSKI-SHAPIRO SETS
    Li, X.
    Zhai, W.
    ACTA MATHEMATICA HUNGARICA, 2022, 168 (01) : 228 - 245
  • [2] Hua's theorem with the primes in Piatetski-Shapiro prime sets
    Li, Jinjiang
    Zhang, Min
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (01) : 193 - 220
  • [3] The three primes theorem with primes in the intersection of two Piatetski--Shapiro sets
    X. Li
    W. Zhai
    Acta Mathematica Hungarica, 2022, 168 : 228 - 245
  • [4] Roth's theorem in the Piatetski-Shapiro primes
    Mirek, Mariusz
    REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (02) : 617 - 656
  • [5] PIATETSKI-SHAPIRO PRIMES IN THE INTERSECTION OF MULTIPLE BEATTY SEQUENCES
    Guo, Victor Zhenyu
    Li, Jinjiang
    Zhang, Min
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (04) : 1375 - 1394
  • [6] A HYBRID OF THEOREMS OF VINOGRADOV AND PIATETSKI-SHAPIRO
    BALOG, A
    FRIEDLANDER, J
    PACIFIC JOURNAL OF MATHEMATICS, 1992, 156 (01) : 45 - 62
  • [7] On Chen's theorem over Piatetski-Shapiro type primes and almost-primes
    Li, Jinjiang
    Xue, Fei
    Zhang, Min
    RAMANUJAN JOURNAL, 2024, 65 (03): : 1323 - 1362
  • [8] Piatetski-Shapiro primes from almost primes
    Roger C. Baker
    William D. Banks
    Zhenyu V. Guo
    Aaron M. Yeager
    Monatshefte für Mathematik, 2014, 174 : 357 - 370
  • [9] An additive problem on Piatetski-Shapiro primes
    Ya Ming Lu
    Acta Mathematica Sinica, English Series, 2018, 34 : 255 - 264
  • [10] An additive problem over intersection of two Piatetski-Shapiro prime sets and almost-primes
    Li, Xiaotian
    Zhai, Wenguang
    PERIODICA MATHEMATICA HUNGARICA, 2024, 89 (02) : 265 - 297