A Unified Probabilistic Framework for Modeling and Inferring Spatial Transcriptomic Data

被引:1
|
作者
Huang, Zhiwei [1 ,2 ]
Luo, Songhao [1 ,2 ]
Zhang, Zhenquan [1 ,2 ]
Wang, Zihao [1 ,2 ]
Zhou, Tianshou [1 ,2 ]
Zhang, Jiajun [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Peoples R China
基金
国家重点研发计划;
关键词
Spatial transcriptomics; single-cell transcriptomics; probabilistic modeling; cell-type deconvolution; hierarchical model; statistical inference; SINGLE-CELL TRANSCRIPTOMICS; GENOME-WIDE EXPRESSION; GENE-EXPRESSION; TISSUE; ARCHITECTURE; ATLAS; SEQ;
D O I
10.2174/1574893618666230529145130
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics (ST) can provide vital insights into tissue function with the spatial organization of cell types. However, most technologies have limited spatial resolution, i.e., each measured location contains a mixture of cells, which only quantify the average expression level across many cells in the location. Recently developed algorithms show the promise to overcome these challenges by integrating single-cell and spatial data. In this review, we summarize spatial transcriptomic technologies and efforts at cell-type deconvolution. Importantly, we propose a unified probabilistic framework, integrating the details of the ST data generation process and the gene expression process simultaneously for modeling and inferring spatial transcriptomic data.
引用
收藏
页码:222 / 234
页数:13
相关论文
共 50 条
  • [41] A probabilistic spatial data model
    Kornatzky, Y
    Shimony, SE
    INFORMATION SCIENCES, 1996, 90 (1-4) : 51 - 74
  • [42] Probabilistic spatial data model
    Ben-Gurion Univ of the Negev, Beer-Sheva, Israel
    Inf Sci, 1-4 (51-74):
  • [43] Advances in spatial transcriptomic data analysis
    Dries, Ruben
    Chen, Jiaji
    Del Rossi, Natalie
    Khan, Mohammed Muzamil
    Sistig, Adriana
    Yuan, Guo-Cheng
    GENOME RESEARCH, 2021, 31 (10) : 1706 - 1718
  • [44] A generative modeling framework for inferring families of biomechanical constitutive laws in data-sparse regimes
    Yin, Minglang
    Zou, Zongren
    Zhang, Enrui
    Cavinato, Cristina
    Humphrey, Jay D.
    Karniadakis, George Em
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2023, 181
  • [45] A Deep Probabilistic Transfer Learning Framework for Soft Sensor Modeling With Missing Data
    Chai, Zheng
    Zhao, Chunhui
    Huang, Biao
    Chen, Hongtian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (12) : 7598 - 7609
  • [46] Modeling Partially Surveyed Point Process Data: Inferring Spatial Point Intensity of Geomagnetic Anomalies
    Kenneth A. Flagg
    Andrew Hoegh
    John J. Borkowski
    Journal of Agricultural, Biological and Environmental Statistics, 2020, 25 : 186 - 205
  • [47] Modeling Partially Surveyed Point Process Data: Inferring Spatial Point Intensity of Geomagnetic Anomalies
    Flagg, Kenneth A.
    Hoegh, Andrew
    Borkowski, John J.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2020, 25 (02) : 186 - 205
  • [48] A unified simulation framework for spatial stochastic models
    Mayer, J
    Schmidt, V
    Schweiggert, F
    SIMULATION MODELLING PRACTICE AND THEORY, 2004, 12 (05) : 307 - 326
  • [49] An architecture modeling framework for probabilistic prediction
    Johnson, Pontus
    Ullberg, Johan
    Buschle, Markus
    Franke, Ulrik
    Shahzad, Khurram
    INFORMATION SYSTEMS AND E-BUSINESS MANAGEMENT, 2014, 12 (04) : 595 - 622
  • [50] A Probabilistic diffusion weld modeling framework
    Davé, VR
    Beyerlein, IJ
    Hartman, DA
    Barbieri, JM
    WELDING JOURNAL, 2003, 82 (07) : 170S - 178S