A Unified Probabilistic Framework for Modeling and Inferring Spatial Transcriptomic Data

被引:1
|
作者
Huang, Zhiwei [1 ,2 ]
Luo, Songhao [1 ,2 ]
Zhang, Zhenquan [1 ,2 ]
Wang, Zihao [1 ,2 ]
Zhou, Tianshou [1 ,2 ]
Zhang, Jiajun [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Peoples R China
基金
国家重点研发计划;
关键词
Spatial transcriptomics; single-cell transcriptomics; probabilistic modeling; cell-type deconvolution; hierarchical model; statistical inference; SINGLE-CELL TRANSCRIPTOMICS; GENOME-WIDE EXPRESSION; GENE-EXPRESSION; TISSUE; ARCHITECTURE; ATLAS; SEQ;
D O I
10.2174/1574893618666230529145130
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics (ST) can provide vital insights into tissue function with the spatial organization of cell types. However, most technologies have limited spatial resolution, i.e., each measured location contains a mixture of cells, which only quantify the average expression level across many cells in the location. Recently developed algorithms show the promise to overcome these challenges by integrating single-cell and spatial data. In this review, we summarize spatial transcriptomic technologies and efforts at cell-type deconvolution. Importantly, we propose a unified probabilistic framework, integrating the details of the ST data generation process and the gene expression process simultaneously for modeling and inferring spatial transcriptomic data.
引用
收藏
页码:222 / 234
页数:13
相关论文
共 50 条
  • [11] A mathematical framework for inferring connectivity in probabilistic neuronal networks
    Nykamp, Duane Q.
    MATHEMATICAL BIOSCIENCES, 2007, 205 (02) : 204 - 251
  • [12] Inferring passenger responses to urban rail disruptions using smart card data: A probabilistic framework
    Mo, Baichuan
    Koutsopoulos, Haris N.
    Zhao, Jinhua
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2022, 159
  • [13] A Unified Probabilistic Framework for Cancer Risk Management
    Rheinberger, Christoph M.
    RISK ANALYSIS, 2021, 41 (04) : 584 - 595
  • [14] A unified framework for probabilistic sequential tolerance control
    McGarvey, RG
    Cavalier, TM
    Del Castillo, E
    Lehtihet, EA
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2004, 42 (07) : 1443 - 1453
  • [15] A Unified Probabilistic Framework for Seismic Hazard Analysis
    Marzocchi, W.
    Jordan, T. H.
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2017, 107 (06) : 2738 - 2744
  • [16] THREAT MODELING FRAMEWORK FOR SECURITY OF UNIFIED STORAGES IN PRIVATE DATA CENTERS
    Hussain, Syed Muzammil
    Islam, M. Hasan
    Ali, Atif
    Nazir, Muhammad Usama
    2020 IEEE 22ND CONFERENCE ON BUSINESS INFORMATICS (CBI 2020), VOL 2: RESEARCH-IN-PROGRESS AND WORKSHOP PAPERS, 2020, : 111 - 120
  • [17] A Bayesian hierarchical framework for spatial modeling of fMRI data
    Bowman, F. DuBois
    Caffo, Brian
    Bassett, Susan Spear
    Kilts, Clinton
    NEUROIMAGE, 2008, 39 (01) : 146 - 156
  • [18] Spatial Modeling for Resources Framework (SMRF): A modular framework for developing spatial forcing data for snow modeling in mountain basins
    Havens, Scott
    Marks, Danny
    Kormos, Patrick
    Hedrick, Andrew
    COMPUTERS & GEOSCIENCES, 2017, 109 : 295 - 304
  • [19] Smoother: a unified and modular framework for incorporating structural dependency in spatial omics data
    Jiayu Su
    Jean-Baptiste Reynier
    Xi Fu
    Guojie Zhong
    Jiahao Jiang
    Rydberg Supo Escalante
    Yiping Wang
    Luis Aparicio
    Benjamin Izar
    David A. Knowles
    Raul Rabadan
    Genome Biology, 24
  • [20] Smoother: a unified and modular framework for incorporating structural dependency in spatial omics data
    Su, Jiayu
    Reynier, Jean-Baptiste
    Fu, Xi
    Zhong, Guojie
    Jiang, Jiahao
    Escalante, Rydberg Supo
    Wang, Yiping
    Aparicio, Luis
    Izar, Benjamin
    Knowles, David A.
    Rabadan, Raul
    GENOME BIOLOGY, 2023, 24 (01)