A Unified Probabilistic Framework for Modeling and Inferring Spatial Transcriptomic Data

被引:1
|
作者
Huang, Zhiwei [1 ,2 ]
Luo, Songhao [1 ,2 ]
Zhang, Zhenquan [1 ,2 ]
Wang, Zihao [1 ,2 ]
Zhou, Tianshou [1 ,2 ]
Zhang, Jiajun [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Peoples R China
基金
国家重点研发计划;
关键词
Spatial transcriptomics; single-cell transcriptomics; probabilistic modeling; cell-type deconvolution; hierarchical model; statistical inference; SINGLE-CELL TRANSCRIPTOMICS; GENOME-WIDE EXPRESSION; GENE-EXPRESSION; TISSUE; ARCHITECTURE; ATLAS; SEQ;
D O I
10.2174/1574893618666230529145130
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics (ST) can provide vital insights into tissue function with the spatial organization of cell types. However, most technologies have limited spatial resolution, i.e., each measured location contains a mixture of cells, which only quantify the average expression level across many cells in the location. Recently developed algorithms show the promise to overcome these challenges by integrating single-cell and spatial data. In this review, we summarize spatial transcriptomic technologies and efforts at cell-type deconvolution. Importantly, we propose a unified probabilistic framework, integrating the details of the ST data generation process and the gene expression process simultaneously for modeling and inferring spatial transcriptomic data.
引用
收藏
页码:222 / 234
页数:13
相关论文
共 50 条
  • [31] Toward a unified probabilistic framework for object recognition and segmentation
    Chen, HJ
    Lee, KC
    Murphy-Chutorian, E
    Triesch, J
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 108 - 117
  • [32] A Unified Framework for Plasma Data Modeling in Dynamic Positron Emission Tomography Studies
    Tonietto, Matteo
    Rizzo, Gaia
    Veronese, Mattia
    Borgan, Faith
    Bloomfield, Peter S.
    Howes, Oliver
    Bertoldo, Alessandra
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (05) : 1447 - 1455
  • [33] Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions
    Testolin, Alberto
    Zorzi, Marco
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 10
  • [34] merlin-A unified modeling framework for data analysis and methods development in Stata
    Crowther, Michael J.
    STATA JOURNAL, 2020, 20 (04): : 763 - 784
  • [35] Unified geostatistical modeling for data fusion and spatial heteroskedasticity with R package ramps
    Smith, Brain J.
    Yan, Jun
    Cowels, Mary Kathryn
    JOURNAL OF STATISTICAL SOFTWARE, 2008, 25 (10): : 1 - 21
  • [36] A framework for an integrated unified modeling language
    Mohammad ALSHAYEB
    Nasser KHASHAN
    Sajjad MAHMOOD
    FrontiersofInformationTechnology&ElectronicEngineering, 2016, 17 (02) : 143 - 159
  • [37] A framework for an integrated unified modeling language
    Mohammad Alshayeb
    Nasser Khashan
    Sajjad Mahmood
    Frontiers of Information Technology & Electronic Engineering, 2016, 17 : 143 - 159
  • [38] A framework for an integrated unified modeling language
    Alshayeb, Mohammad
    Khashan, Nasser
    Mahmood, Sajjad
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2016, 17 (02) : 143 - 159
  • [39] Inferring histology-associated gene expression gradients in spatial transcriptomic studies
    Kueckelhaus, Jan
    Frerich, Simon
    Kada-Benotmane, Jasim
    Koupourtidou, Christina
    Ninkovic, Jovica
    Dichgans, Martin
    Beck, Juergen
    Schnell, Oliver
    Heiland, Dieter Henrik
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [40] Analysis and Visualization of Spatial Transcriptomic Data
    Liu, Boxiang
    Li, Yanjun
    Zhang, Liang
    FRONTIERS IN GENETICS, 2022, 12