A Unified Probabilistic Framework for Modeling and Inferring Spatial Transcriptomic Data

被引:1
|
作者
Huang, Zhiwei [1 ,2 ]
Luo, Songhao [1 ,2 ]
Zhang, Zhenquan [1 ,2 ]
Wang, Zihao [1 ,2 ]
Zhou, Tianshou [1 ,2 ]
Zhang, Jiajun [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Peoples R China
基金
国家重点研发计划;
关键词
Spatial transcriptomics; single-cell transcriptomics; probabilistic modeling; cell-type deconvolution; hierarchical model; statistical inference; SINGLE-CELL TRANSCRIPTOMICS; GENOME-WIDE EXPRESSION; GENE-EXPRESSION; TISSUE; ARCHITECTURE; ATLAS; SEQ;
D O I
10.2174/1574893618666230529145130
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics (ST) can provide vital insights into tissue function with the spatial organization of cell types. However, most technologies have limited spatial resolution, i.e., each measured location contains a mixture of cells, which only quantify the average expression level across many cells in the location. Recently developed algorithms show the promise to overcome these challenges by integrating single-cell and spatial data. In this review, we summarize spatial transcriptomic technologies and efforts at cell-type deconvolution. Importantly, we propose a unified probabilistic framework, integrating the details of the ST data generation process and the gene expression process simultaneously for modeling and inferring spatial transcriptomic data.
引用
收藏
页码:222 / 234
页数:13
相关论文
共 50 条
  • [1] A unified probabilistic framework for facial activity modeling and understanding
    Tong, Yan
    Liao, Wenhui
    Xue, Zheng
    Ji, Qiang
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 2363 - +
  • [2] A Unified Probabilistic Framework for Spontaneous Facial Action Modeling and Understanding
    Tong, Yan
    Chen, Jixu
    Ji, Qiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (02) : 258 - 273
  • [3] Inferring the shape of data: a probabilistic framework for analysing experiments in the natural sciences
    Ray, Korak Kumar
    Verma, Anjali R.
    Gonzalez, Ruben L.
    Kinz-Thompson, Colin D.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2266):
  • [4] Inferring spatial and signaling relationships between cells from single cell transcriptomic data
    Cang, Zixuan
    Nie, Qing
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [5] Inferring spatial and signaling relationships between cells from single cell transcriptomic data
    Zixuan Cang
    Qing Nie
    Nature Communications, 11
  • [6] A unified framework for data modeling on Medical Information Systems
    Neves, J
    Cortez, P
    Rocha, M
    Abelha, A
    Machado, J
    Alves, V
    Basto, S
    Botelho, H
    Neves, J
    MEDICAL INFORMATICS EUROPE '99, 1999, 68 : 68 - 71
  • [7] A Probabilistic Framework for Inferring Ancestral Genomic Orders
    Ma, Jian
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2010, : 179 - 184
  • [8] Probabilistic Approach for Modeling and Presenting Error in Spatial Data
    Fekpe, Edward S.
    Windholz, Thomas K.
    Beard, Kate
    JOURNAL OF SURVEYING ENGINEERING, 2009, 135 (03) : 101 - 112
  • [9] A Probabilistic Unified Framework for Event Abstraction and Process Detection from Log Data
    Fazzinga, Bettina
    Flesca, Sergio
    Furfaro, Filippo
    Masciari, Elio
    Pontieri, Luigi
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS: OTM 2015 CONFERENCES, 2015, 9415 : 320 - 328
  • [10] Modeling spatial integration in the ocular following response using a probabilistic framework
    Perrinet, Laurent U.
    Masson, Guillaume S.
    JOURNAL OF PHYSIOLOGY-PARIS, 2007, 101 (1-3) : 46 - 55