Non-Abelian Topological Phases and Their Quotient Relations in Acoustic Systems

被引:1
|
作者
Sun, Xiao-Chen [1 ,2 ,3 ]
Wang, Jia-Bao [1 ,2 ]
He, Cheng [1 ,2 ,3 ,4 ]
Chen, Yan-Feng [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Dept Mat Sci & Engn, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
INSULATOR;
D O I
10.1103/PhysRevLett.132.216602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Non-Abelian topological phases (NATPs) exhibit enigmatic intrinsic physics distinct from wellestablished Abelian topological phases, while lacking straightforward configuration and manipulation, especially for classical waves. In this Letter, we exploit novel braiding-type couplings among a pair of triple-component acoustic dipoles, which act as functional elements with effective imaginary couplings. Sequencing them in one dimension allows us to generate acoustic NATPs in a compact yet time-reversal invariant Hermitian system. We further provide the whole phase diagram that encompasses all i, j, and k non-Abelian phases, and directly demonstrate their unique quotient relations via different end point states. Our NATPs based on real-space braiding may inspire the exploration of acoustic devices with noncommutative characters.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] NON-TOPOLOGICAL SOLITON WITH A NON-ABELIAN INTERNAL SYMMETRY
    ZHOU, GH
    CHOU, KC
    ZHU, ZU
    CHU, CY
    DAI, YB
    WU, YS
    SCIENTIA SINICA, 1980, 23 (01): : 40 - 60
  • [42] Symmetry enforced non-Abelian topological order at the surface of a topological insulator
    Chen, Xie
    Fidkowski, Lukasz
    Vishwanath, Ashvin
    PHYSICAL REVIEW B, 2014, 89 (16)
  • [43] NON-ABELIAN VORTICES AND NON-ABELIAN STATISTICS
    LO, HK
    PRESKILL, J
    PHYSICAL REVIEW D, 1993, 48 (10) : 4821 - 4834
  • [44] Non-Abelian effects in dissipative photonic topological lattices
    Parto, Midya
    Leefmans, Christian
    Williams, James
    Nori, Franco
    Marandi, Alireza
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [45] Topological Quantum Field Theory on non-Abelian gerbes
    Kalkkinen, Jussi
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) : 505 - 530
  • [46] Non-abelian lattice gauge theory with a topological action
    Daniel Nogradi
    Lorinc Szikszai
    Zoltan Varga
    Journal of High Energy Physics, 2018
  • [47] Topological Quantum Liquids with Quaternion Non-Abelian Statistics
    Xu, Cenke
    Ludwig, Andreas W. W.
    PHYSICAL REVIEW LETTERS, 2012, 108 (04)
  • [48] Topological superfluids on a lattice with non-Abelian gauge fields
    Kubasiak, A.
    Massignan, P.
    Lewenstein, M.
    EPL, 2010, 92 (04)
  • [49] BRST QUANTIZATION OF NON-ABELIAN BF TOPOLOGICAL THEORIES
    CAICEDO, MI
    GIANVITTORIO, R
    RESTUCCIA, A
    STEPHANY, J
    PHYSICS LETTERS B, 1995, 354 (3-4) : 292 - 299
  • [50] Error Correction for Non-Abelian Topological Quantum Computation
    Wootton, James R.
    Burri, Jan
    Iblisdir, Sofyan
    Loss, Daniel
    PHYSICAL REVIEW X, 2014, 4 (01):