Non-Abelian Topological Phases and Their Quotient Relations in Acoustic Systems

被引:1
|
作者
Sun, Xiao-Chen [1 ,2 ,3 ]
Wang, Jia-Bao [1 ,2 ]
He, Cheng [1 ,2 ,3 ,4 ]
Chen, Yan-Feng [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Dept Mat Sci & Engn, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
INSULATOR;
D O I
10.1103/PhysRevLett.132.216602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Non-Abelian topological phases (NATPs) exhibit enigmatic intrinsic physics distinct from wellestablished Abelian topological phases, while lacking straightforward configuration and manipulation, especially for classical waves. In this Letter, we exploit novel braiding-type couplings among a pair of triple-component acoustic dipoles, which act as functional elements with effective imaginary couplings. Sequencing them in one dimension allows us to generate acoustic NATPs in a compact yet time-reversal invariant Hermitian system. We further provide the whole phase diagram that encompasses all i, j, and k non-Abelian phases, and directly demonstrate their unique quotient relations via different end point states. Our NATPs based on real-space braiding may inspire the exploration of acoustic devices with noncommutative characters.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Non-Abelian Topological Bound States in the Continuum
    Qian, Long
    Zhang, Weixuan
    Sun, Houjuan
    Zhang, Xiangdong
    PHYSICAL REVIEW LETTERS, 2024, 132 (04)
  • [22] Splitting the Topological Degeneracy of Non-Abelian Anyons
    Bonderson, Parsa
    PHYSICAL REVIEW LETTERS, 2009, 103 (11)
  • [23] Non-Abelian extensions of topological lie algebras
    Neeb, KH
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (03) : 991 - 1041
  • [24] Topological features in non-Abelian gauge theory
    Malik, RP
    MODERN PHYSICS LETTERS A, 1999, 14 (28) : 1937 - 1949
  • [25] Non-Abelian bosonization of topological insulators and superconductors
    Huang, Yen-Ta
    Lee, Dung-Hai
    PHYSICAL REVIEW B, 2022, 106 (24)
  • [26] NON-ABELIAN TOPOLOGICAL SOLUTIONS IN STRINGY GRAVITY
    GALTSOV, DV
    DONETS, EE
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1994, 3 (04): : 755 - 771
  • [27] Non-Abelian Braiding of Topological Edge Bands
    Long, Yang
    Wang, Zihao
    Zhang, Chen
    Xue, Haoran
    Zhao, Y. X.
    Zhang, Baile
    PHYSICAL REVIEW LETTERS, 2024, 132 (23)
  • [28] Non-Abelian defects in fracton phases of matter
    You, Yizhi
    PHYSICAL REVIEW B, 2019, 100 (07)
  • [29] Productivity of sequences in non-abelian topological groups
    Spevak, Jan
    TOPOLOGY AND ITS APPLICATIONS, 2015, 191 : 163 - 177
  • [30] Non-Abelian anyons and topological quantum computation
    Nayak, Chetan
    Simon, Steven H.
    Stern, Ady
    Freedman, Michael
    Das Sarma, Sankar
    REVIEWS OF MODERN PHYSICS, 2008, 80 (03) : 1083 - 1159