Non-Abelian Topological Phases and Their Quotient Relations in Acoustic Systems

被引:1
|
作者
Sun, Xiao-Chen [1 ,2 ,3 ]
Wang, Jia-Bao [1 ,2 ]
He, Cheng [1 ,2 ,3 ,4 ]
Chen, Yan-Feng [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Dept Mat Sci & Engn, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
INSULATOR;
D O I
10.1103/PhysRevLett.132.216602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Non-Abelian topological phases (NATPs) exhibit enigmatic intrinsic physics distinct from wellestablished Abelian topological phases, while lacking straightforward configuration and manipulation, especially for classical waves. In this Letter, we exploit novel braiding-type couplings among a pair of triple-component acoustic dipoles, which act as functional elements with effective imaginary couplings. Sequencing them in one dimension allows us to generate acoustic NATPs in a compact yet time-reversal invariant Hermitian system. We further provide the whole phase diagram that encompasses all i, j, and k non-Abelian phases, and directly demonstrate their unique quotient relations via different end point states. Our NATPs based on real-space braiding may inspire the exploration of acoustic devices with noncommutative characters.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Topological degeneracy of non-Abelian states for dummies
    Oshikawa, Masaki
    Kim, Yong Baek
    Shtengel, Kirill
    Nayak, Chetan
    Tewari, Sumanta
    ANNALS OF PHYSICS, 2007, 322 (06) : 1477 - 1498
  • [32] CHAOS IN ABELIAN AND NON-ABELIAN HIGGS SYSTEMS
    DEY, B
    KUMAR, CN
    SEN, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (10): : 1755 - 1772
  • [33] D-branes on non-abelian threefold quotient singularities
    Greene, BR
    Lazaroiu, CI
    Raugas, M
    NUCLEAR PHYSICS B, 1999, 553 (03) : 711 - 749
  • [34] Classical non-Abelian braiding of acoustic modes
    Chen, Ze-Guo
    Zhang, Ruo-Yang
    Chan, C. T.
    Ma, Guancong
    NATURE PHYSICS, 2022, 18 (02) : 179 - +
  • [35] Comment on "Detecting non-Abelian geometric phases with three-level Λ systems"
    Ericsson, Marie
    Sjoqvist, Erik
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [36] Classical non-Abelian braiding of acoustic modes
    Ze-Guo Chen
    Ruo-Yang Zhang
    C. T. Chan
    Guancong Ma
    Nature Physics, 2022, 18 : 179 - 184
  • [37] Second Chern Number and Non-Abelian Berry Phase in Topological Superconducting Systems
    Weisbrich, H.
    Klees, R. L.
    Rastelli, G.
    Belzig, W.
    PRX QUANTUM, 2021, 2 (01):
  • [38] NON-ABELIAN GAUGE FIELDS - COMMUTATION RELATIONS
    SCHWINGER, J
    PHYSICAL REVIEW, 1962, 125 (03): : 1043 - &
  • [39] Classical Topological Order in Abelian and Non-Abelian Generalized Height Models
    Lamberty, R. Zachary
    Papanikolaou, Stefanos
    Henley, Christopher L.
    PHYSICAL REVIEW LETTERS, 2013, 111 (24)
  • [40] THE NON-TOPOLOGICAL SOLITON WITH A NON-ABELIAN INTERNAL SYMMETRY
    周光召
    朱重远
    戴元本
    吴詠时
    Science China Mathematics, 1980, (01) : 40 - 60