Pointed Lattice Subreducts of Varieties of Residuated Lattices

被引:1
|
作者
Prenosil, Adam [1 ]
机构
[1] Univ Barcelona, Dept Filosofia, Barcelona, Spain
关键词
Lattices; Residuated lattices; Cancellative residuated lattices;
D O I
10.1007/s11083-024-09671-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the pointed lattice subreducts of varieties of residuated lattices (RLs) and commutative residuated lattices (CRLs), i.e. lattice subreducts expanded by the constant 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{1}$$\end{document} denoting the multiplicative unit. Given any positive universal class of pointed lattices K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{K}$$\end{document} satisfying a certain equation, we describe the pointed lattice subreducts of semi- K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{K}$$\end{document} and of pre- K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{K}$$\end{document} RLs and CRLs. The quasivariety of semi-prime-pointed lattices generated by pointed lattices with a join prime constant 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{1}$$\end{document} plays an important role here. In particular, the pointed lattice reducts of integral (semiconic) RLs and CRLs are precisely the integral (semiconic) semi-prime-pointed lattices. We also describe the pointed lattice subreducts of integral cancellative CRLs, proving in particular that every lattice is a subreduct of some integral cancellative CRL. This resolves an open problem about cancellative CRLs.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Abelian Logic and the Logics of Pointed Lattice-Ordered Varieties
    Paoli, Francesco
    Spinks, Matthew
    Veroff, Robert
    LOGICA UNIVERSALIS, 2008, 2 (02) : 209 - 233
  • [42] ON LATTICE IDENTITIES SATISFIED IN SUBQUASIVARIETY LATTICES OF VARIETIES OF MODULAR LATTICES
    DZIOBIAK, W
    ALGEBRA UNIVERSALIS, 1986, 22 (2-3) : 205 - 214
  • [43] Varieties of Commutative Integral Bounded Residuated Lattices Admitting a Boolean Retraction Term
    Cignoli, Roberto
    Torrens, Antoni
    STUDIA LOGICA, 2012, 100 (06) : 1107 - 1136
  • [44] Factorization of residuated lattices
    Krupka, Michal
    LOGIC JOURNAL OF THE IGPL, 2009, 17 (02) : 205 - 223
  • [45] Skew residuated lattices
    Chajda, I.
    Krnavek, J.
    FUZZY SETS AND SYSTEMS, 2013, 222 : 78 - 83
  • [46] Gluing Residuated Lattices
    Galatos, Nikolaos
    Ugolini, Sara
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2023, 40 (03): : 623 - 664
  • [47] On ideals of residuated lattices
    Dong, Yan Yan
    Wang, Jun Tao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (01) : 613 - 623
  • [48] STABILIZER IN RESIDUATED LATTICES
    Saeid, A. Borumand
    Mohtashamnia, N.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2012, 74 (02): : 65 - 74
  • [49] Quasicomplemented residuated lattices
    Saeed Rasouli
    Soft Computing, 2020, 24 : 6591 - 6602
  • [50] On state residuated lattices
    Pengfei He
    Xiaolong Xin
    Yongwei Yang
    Soft Computing, 2015, 19 : 2083 - 2094