Pointed Lattice Subreducts of Varieties of Residuated Lattices

被引:1
|
作者
Prenosil, Adam [1 ]
机构
[1] Univ Barcelona, Dept Filosofia, Barcelona, Spain
关键词
Lattices; Residuated lattices; Cancellative residuated lattices;
D O I
10.1007/s11083-024-09671-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the pointed lattice subreducts of varieties of residuated lattices (RLs) and commutative residuated lattices (CRLs), i.e. lattice subreducts expanded by the constant 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{1}$$\end{document} denoting the multiplicative unit. Given any positive universal class of pointed lattices K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{K}$$\end{document} satisfying a certain equation, we describe the pointed lattice subreducts of semi- K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{K}$$\end{document} and of pre- K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{K}$$\end{document} RLs and CRLs. The quasivariety of semi-prime-pointed lattices generated by pointed lattices with a join prime constant 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{1}$$\end{document} plays an important role here. In particular, the pointed lattice reducts of integral (semiconic) RLs and CRLs are precisely the integral (semiconic) semi-prime-pointed lattices. We also describe the pointed lattice subreducts of integral cancellative CRLs, proving in particular that every lattice is a subreduct of some integral cancellative CRL. This resolves an open problem about cancellative CRLs.
引用
收藏
页数:28
相关论文
共 50 条