Pointed Lattice Subreducts of Varieties of Residuated Lattices

被引:1
|
作者
Prenosil, Adam [1 ]
机构
[1] Univ Barcelona, Dept Filosofia, Barcelona, Spain
关键词
Lattices; Residuated lattices; Cancellative residuated lattices;
D O I
10.1007/s11083-024-09671-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the pointed lattice subreducts of varieties of residuated lattices (RLs) and commutative residuated lattices (CRLs), i.e. lattice subreducts expanded by the constant 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{1}$$\end{document} denoting the multiplicative unit. Given any positive universal class of pointed lattices K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{K}$$\end{document} satisfying a certain equation, we describe the pointed lattice subreducts of semi- K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{K}$$\end{document} and of pre- K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{K}$$\end{document} RLs and CRLs. The quasivariety of semi-prime-pointed lattices generated by pointed lattices with a join prime constant 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{1}$$\end{document} plays an important role here. In particular, the pointed lattice reducts of integral (semiconic) RLs and CRLs are precisely the integral (semiconic) semi-prime-pointed lattices. We also describe the pointed lattice subreducts of integral cancellative CRLs, proving in particular that every lattice is a subreduct of some integral cancellative CRL. This resolves an open problem about cancellative CRLs.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Free-decomposability in Varieties of Pseudocomplemented Residuated Lattices
    Castano, D.
    Diaz Varela, J. P.
    Torrens, A.
    STUDIA LOGICA, 2011, 98 (1-2) : 223 - 235
  • [22] Semisimples in Varieties of Commutative Integral Bounded Residuated Lattices
    Antoni Torrens
    Studia Logica, 2016, 104 : 849 - 867
  • [23] Semisimples in Varieties of Commutative Integral Bounded Residuated Lattices
    Torrens, Antoni
    STUDIA LOGICA, 2016, 104 (05) : 849 - 867
  • [24] THE FAILURE OF THE AMALGAMATION PROPERTY FOR SEMILINEAR VARIETIES OF RESIDUATED LATTICES
    Gil-Ferez, Jose
    Ledda, Antonio
    Tsinakis, Constantine
    MATHEMATICA SLOVACA, 2015, 65 (04) : 817 - 828
  • [25] The subvariety lattice for representable idempotent commutative residuated lattices
    Jeffrey S. Olson
    Algebra universalis, 2012, 67 : 43 - 58
  • [26] Q-residuated lattices and lattice pseudoeffect algebras
    Zhang, Xiaohong
    Wang, Mei
    Sheng, Nan
    SOFT COMPUTING, 2022, 26 (10) : 4519 - 4540
  • [27] Q-residuated lattices and lattice pseudoeffect algebras
    Xiaohong Zhang
    Mei Wang
    Nan Sheng
    Soft Computing, 2022, 26 : 4519 - 4540
  • [28] Amalgamation through quantifier elimination for varieties of commutative residuated lattices
    Enrico Marchioni
    Archive for Mathematical Logic, 2012, 51 : 15 - 34
  • [29] The FEP for some varieties of fully distributive knotted residuated lattices
    Cardona, Riquelmi
    Galatos, Nikolaos
    ALGEBRA UNIVERSALIS, 2017, 78 (03) : 363 - 376
  • [30] The FEP for some varieties of fully distributive knotted residuated lattices
    Riquelmi Cardona
    Nikolaos Galatos
    Algebra universalis, 2017, 78 : 363 - 376