Silicon PIN array-based charge measurement detector for HERD beam test

被引:0
|
作者
Gong, Ke [1 ,2 ]
Qiao, Rui [1 ]
Peng, Wenxi [1 ,2 ]
Lu, Bin [1 ]
Liu, Yaqing [1 ]
Guo, Dongya [1 ]
Lu, Ruosi [1 ]
Liu, Xuan [1 ,3 ]
Zhang, Zhen [1 ,3 ]
Zhang, Jiahe [1 ,3 ]
Bao, Tianwei [1 ]
Dong, Yongwei [1 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, 19B Yuquan Rd, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, 1 Yanqihu East Rd, Beijing 101408, Peoples R China
[3] North China Univ Technol, 5 Jinyuanzhuang Rd, Beijing 100144, Peoples R China
基金
中国国家自然科学基金;
关键词
Cosmic ray; PID; HERD; Charge measurement; PLASTIC SCINTILLATOR DETECTOR;
D O I
10.1007/s41605-024-00465-w
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
PurposeThe high-energy cosmic radiation detection (HERD) is a dedicated space cosmic ray detector, planned to be launched and installed on the China Space Station (CSS) around 2027. One of the main goals of HERD is to measure the composition and energy spectra of cosmic rays (CR) with energies as high as several PeV by using silicon charge detectors (SCD) (Altomare et al. in The silicon charge detector of the high energy cosmic radiation detection facility, 2023), plastic scintillator detectors (PSD) (Kyratzis et al. in Proceedings of Sc. (ICRC2021), vol. 651, 2021), and 3D calorimeters (CALO) (Liu et al. in J Instrum 18(09):09002, 2023). To assess HERD's charge measurement capability during the beam test, a particle identification detector (PID) with a large dynamic range is required.MethodsA Si-PIN-based PID detector is conceptualized and manufactured. It is composed of four layers, each containing 30 Si-PIN sensors. In four IDE1160 ASICs, the signals from the Si-PIN arrays are preamplified, shaped, peak-held, and serially read out by four IDE1160 ASICs. A DAQ system is created to digitize the analog signals from ASICs, organize the data package, and transfer it to the host computer.Results and conclusionBefore going to the beam test, the dynamic range, linearity, pedestal, and noise level of each channel in PID were studied at home. The dynamic range is 0 to +5 pC, the linearity is better than 2%, and the RMSE (Root Mean Square Error) of the pedestal is about 1 fC. The preliminary beam test results show that PID is capable of detecting heavy ions from Z=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z=4$$\end{document} (Be) to Z=31\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z=31$$\end{document} (Ga), and the charge resolution is better than 0.3 charge units (c.u.).
引用
收藏
页码:1480 / 1485
页数:6
相关论文
共 50 条
  • [41] Single-Crystalline Silicon Nanowire Array-Based Photoelectrochemical Cells
    Dalchiele, Enrique A.
    Martin, Francisco
    Leinen, Dietmar
    Marotti, Ricardo E.
    Ramon Ramos-Barrado, Jose
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (05) : K77 - K81
  • [42] A Novel Array-Based Test Methodology for Local Process Variation Monitoring
    Luo, Tseng-Chin
    Chao, Mango C. -T.
    Wu, Michael Shien-Yang
    Li, Kuo-Tsai
    Hsia, Chin C.
    Tseng, Huan-Chi
    Fisher, Philip A.
    Huang, Chuen-Uan
    Chang, Yuan-Yao
    Pan, Samuel C.
    Young, Konrad K. -L.
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2011, 24 (02) : 280 - 293
  • [43] A novel array-based test methodology for local process variation monitoring
    Luo, Tseng-Chin
    Chao, Mango C. -T.
    Wu, Michael S. -Y.
    Li, Kuo-Tsai
    Hsia, Chin C.
    Tseng, Huan-Chi
    Huang, Chuen-Uan
    Chang, Yuan-Yao
    Pan, Samuel C.
    Young, Konrad K. -L.
    ITC: 2009 INTERNATIONAL TEST CONFERENCE, 2009, : 511 - +
  • [44] A Simple Array-Based Test Structure for the AC Variability Characterization of MOSFETs
    Balakrishnan, Karthik
    Jenkins, Keith A.
    Boning, Duane
    2011 12TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED), 2011, : 539 - 544
  • [45] Accurate Array-Based Measurement for Subthreshold-Current of MOS Transistors
    Sato, Takashi
    Ueyama, Hiroyuki
    Nakayama, Noriaki
    Masu, Kazuya
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2009, 44 (11) : 2977 - 2986
  • [46] A universal array-based multiplexed test for cystic fibrosis carrier screening
    Amos, JA
    Bridge-Cook, P
    Ponek, V
    Jarvis, MR
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2006, 6 (01) : 15 - 22
  • [47] Camera Array-Based Optical Measurement Approach and System for Occluded Targets
    Lu Han
    Ma Qinwei
    Ma Shaopeng
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (08)
  • [48] SPOT synthesis:: Reliability of array-based measurement of peptide binding affinity
    Weiser, AA
    Or-Guil, M
    Tapia, V
    Leichsenring, A
    Schuchhardt, J
    Frömmel, C
    Volkmer-Engert, R
    ANALYTICAL BIOCHEMISTRY, 2005, 342 (02) : 300 - 311
  • [49] Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project
    Paolozzi, L.
    Bandi, Y.
    Benoit, M.
    Cardarelli, R.
    Debieux, S.
    Forshaw, D.
    Hayakawa, D.
    Iacobucci, G.
    Kaynak, M.
    Miucci, A.
    Nessi, M.
    Ratib, O.
    Ripiccini, E.
    Ruecker, H.
    Valerio, P.
    Weber, M.
    JOURNAL OF INSTRUMENTATION, 2018, 13
  • [50] Silicon PIN Photodiode-Based Radiation Detector for Mobile Robots
    Petruk, O.
    Szewczyk, R.
    MECHATRONICS 2013: RECENT TECHNOLOGICAL AND SCIENTIFIC ADVANCES, 2014, : 409 - 416