Silicon PIN array-based charge measurement detector for HERD beam test

被引:0
|
作者
Gong, Ke [1 ,2 ]
Qiao, Rui [1 ]
Peng, Wenxi [1 ,2 ]
Lu, Bin [1 ]
Liu, Yaqing [1 ]
Guo, Dongya [1 ]
Lu, Ruosi [1 ]
Liu, Xuan [1 ,3 ]
Zhang, Zhen [1 ,3 ]
Zhang, Jiahe [1 ,3 ]
Bao, Tianwei [1 ]
Dong, Yongwei [1 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, 19B Yuquan Rd, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, 1 Yanqihu East Rd, Beijing 101408, Peoples R China
[3] North China Univ Technol, 5 Jinyuanzhuang Rd, Beijing 100144, Peoples R China
基金
中国国家自然科学基金;
关键词
Cosmic ray; PID; HERD; Charge measurement; PLASTIC SCINTILLATOR DETECTOR;
D O I
10.1007/s41605-024-00465-w
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
PurposeThe high-energy cosmic radiation detection (HERD) is a dedicated space cosmic ray detector, planned to be launched and installed on the China Space Station (CSS) around 2027. One of the main goals of HERD is to measure the composition and energy spectra of cosmic rays (CR) with energies as high as several PeV by using silicon charge detectors (SCD) (Altomare et al. in The silicon charge detector of the high energy cosmic radiation detection facility, 2023), plastic scintillator detectors (PSD) (Kyratzis et al. in Proceedings of Sc. (ICRC2021), vol. 651, 2021), and 3D calorimeters (CALO) (Liu et al. in J Instrum 18(09):09002, 2023). To assess HERD's charge measurement capability during the beam test, a particle identification detector (PID) with a large dynamic range is required.MethodsA Si-PIN-based PID detector is conceptualized and manufactured. It is composed of four layers, each containing 30 Si-PIN sensors. In four IDE1160 ASICs, the signals from the Si-PIN arrays are preamplified, shaped, peak-held, and serially read out by four IDE1160 ASICs. A DAQ system is created to digitize the analog signals from ASICs, organize the data package, and transfer it to the host computer.Results and conclusionBefore going to the beam test, the dynamic range, linearity, pedestal, and noise level of each channel in PID were studied at home. The dynamic range is 0 to +5 pC, the linearity is better than 2%, and the RMSE (Root Mean Square Error) of the pedestal is about 1 fC. The preliminary beam test results show that PID is capable of detecting heavy ions from Z=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z=4$$\end{document} (Be) to Z=31\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z=31$$\end{document} (Ga), and the charge resolution is better than 0.3 charge units (c.u.).
引用
收藏
页码:1480 / 1485
页数:6
相关论文
共 50 条
  • [21] Test beam performance of the ALICE silicon pixel detector
    Nilsson, P
    Anelli, G
    Antinori, F
    Boccardi, A
    Burns, M
    Cali, IA
    Campbell, M
    Caselle, M
    Chochula, P
    Cinausero, M
    Dalessandro, A
    Dima, R
    Dinapoli, R
    Elia, D
    En'yo, H
    Fabris, D
    Fini, R
    Fioretto, E
    Formenti, F
    Fujiwara, K
    Heuser, JM
    Kano, H
    Kapusta, S
    Kluge, A
    Krivda, M
    Lenti, V
    Librizzi, F
    Lunardon, M
    Manzari, V
    Morel, M
    Moretto, S
    Ohnishi, H
    Giner, AO
    Osmic, F
    Pappalardo, GS
    Pepato, A
    Prete, G
    Riedler, P
    Santoro, R
    Scarlassara, F
    Segato, G
    Soramel, F
    Stefanini, G
    Tanida, K
    Taketani, A
    Turrisi, R
    Vannucci, L
    Viesti, G
    Virgili, T
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 535 (1-2): : 424 - 427
  • [22] The silicon transition radiation detector:: A test with a beam of particles
    Brigida, M
    Favuzzi, C
    Fusco, P
    Gargano, F
    Giglietto, N
    Giordano, F
    Loparco, F
    Mazziotta, MN
    Mirizzi, N
    Rainò, A
    Rainò, S
    Spinelli, P
    Prest, M
    Vallazza, E
    ADVANCED TECHNOLOGY AND PARTICLE PHYSICS, PROCEEDINGS, 2002, 1 : 587 - 591
  • [23] Beam test of CSES silicon strip detector module
    Zhang, Da-Li
    Lu, Hong
    Wang, Huan-Yu
    Li, Xin-Qiao
    Xu, Yan-Bing
    An, Zheng-Hua
    Yu, Xiao-xia
    Wang, Hui
    Shi, Feng
    Wang, Ping
    Zhao, Xiao-Yun
    CHINESE PHYSICS C, 2017, 41 (05)
  • [24] MUST:: A silicon strip detector array for radioactive beam experiments
    Blumenfeld, Y
    Auger, F
    Sauvestre, JE
    Marechal, F
    Ottini, S
    Alamanos, N
    Barbier, A
    Beaumel, D
    Bonnereau, B
    Charlet, D
    Clavelin, JF
    Courtat, P
    Delbourgo-Salvador, P
    Douet, R
    Engrand, M
    Ethvignot, T
    Gillibert, A
    Khan, E
    Lapoux, V
    Lagoyannis, A
    Lavergne, L
    Lebon, S
    Lelong, P
    Lesage, A
    Le Ven, V
    Lhenry, I
    Martin, JM
    Musumarra, A
    Pita, S
    Petizon, L
    Pollacco, E
    Pouthas, J
    Richard, A
    Rougier, D
    Santonocito, D
    Scarpaci, JA
    Sida, JL
    Soulet, C
    Stutzmann, JS
    Suomijärvi, T
    Szmigiel, M
    Volkov, P
    Voltolini, G
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 421 (03): : 471 - 491
  • [25] Beam diagnostics with silicon pixel detector array at PADME experiment
    Bertelli, S.
    Bossi, F.
    Di Giulio, C.
    Di Meco, E.
    Dimitrova, K.
    De Sangro, R.
    Domenici, D.
    Frankenthal, A.
    Ferrarotto, F.
    Finocchiaro, G.
    Foggetta, L. G.
    Garattini, M.
    Georgiev, G.
    Gianotti, P.
    Ivanov, S.
    Ivanov, Sv.
    Kozhuharov, V.
    Leonardi, E.
    Long, E.
    Mancini, M.
    Oceano, I.
    Oliva, F.
    Organtini, G. C.
    Piperno, G.
    Raggi, M.
    Sarra, I.
    Simeonov, R.
    Spadaro, T.
    Spiriti, E.
    Taruggi, C.
    Vilucchi, E.
    Valente, P.
    Variola, A.
    JOURNAL OF INSTRUMENTATION, 2024, 19 (01)
  • [26] MUST: A silicon strip detector array for radioactive beam experiments
    Blumenfeld, Y.
    Auger, F.
    Sauvestre, J.E.
    Marechal, F.
    Ottini, S.
    Alamanos, N.
    Barbier, A.
    Beaumel, D.
    Bonnereau, B.
    Charlet, D.
    Clavelin, J.F.
    Courtat, P.
    Delbourgo-Salvador, P.
    Douet, R.
    Engrand, M.
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 421 (03): : 471 - 491
  • [27] Heavy ion beam test results of the silicon charge detector for the CREAM cosmic ray balloon mission
    Park, IH
    Ahn, HS
    Bok, JB
    Ganel, O
    Hahn, JH
    Han, W
    Hyun, HJ
    Kim, HJ
    Kim, MY
    Kim, YJ
    Lee, JK
    Lee, MH
    Lutz, L
    Min, KW
    Malinine, A
    Nam, SW
    Nam, W
    Park, H
    Park, NH
    Seo, ES
    Seon, KI
    Sone, JH
    Yang, J
    Zinn, SY
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 535 (1-2): : 158 - 161
  • [28] Investigation of the required detector distance in array-based treatment plan verifications
    Stedem, A.
    Quast, J.
    Gottschlag, H.
    Schonfeld, A. A.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S1347 - S1348
  • [29] Silicon Micropillar Array-Based Wearable Sweat Glucose Sensor
    Dervisevic, Muamer
    Alba, Maria
    Esser, Lars
    Tabassum, Nazia
    Prieto-Simon, Beatriz
    Voelcker, Nicolas H.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) : 2401 - 2410
  • [30] Beam test performance of a scintillator-based detector for the charge identification of relativistic ions
    Marrocchesi, P. S.
    Adriani, O.
    Akaike, Y.
    Bagliesi, M. G.
    Basti, A.
    Bigongiari, G.
    Bonechi, S.
    Bongi, M.
    Kim, M. Y.
    Lomtadze, T.
    Maestro, P.
    Niita, T.
    Ozawa, S.
    Shimizu, Y.
    Torii, S.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 659 (01): : 477 - 483