Silicon PIN array-based charge measurement detector for HERD beam test

被引:0
|
作者
Gong, Ke [1 ,2 ]
Qiao, Rui [1 ]
Peng, Wenxi [1 ,2 ]
Lu, Bin [1 ]
Liu, Yaqing [1 ]
Guo, Dongya [1 ]
Lu, Ruosi [1 ]
Liu, Xuan [1 ,3 ]
Zhang, Zhen [1 ,3 ]
Zhang, Jiahe [1 ,3 ]
Bao, Tianwei [1 ]
Dong, Yongwei [1 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, 19B Yuquan Rd, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, 1 Yanqihu East Rd, Beijing 101408, Peoples R China
[3] North China Univ Technol, 5 Jinyuanzhuang Rd, Beijing 100144, Peoples R China
基金
中国国家自然科学基金;
关键词
Cosmic ray; PID; HERD; Charge measurement; PLASTIC SCINTILLATOR DETECTOR;
D O I
10.1007/s41605-024-00465-w
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
PurposeThe high-energy cosmic radiation detection (HERD) is a dedicated space cosmic ray detector, planned to be launched and installed on the China Space Station (CSS) around 2027. One of the main goals of HERD is to measure the composition and energy spectra of cosmic rays (CR) with energies as high as several PeV by using silicon charge detectors (SCD) (Altomare et al. in The silicon charge detector of the high energy cosmic radiation detection facility, 2023), plastic scintillator detectors (PSD) (Kyratzis et al. in Proceedings of Sc. (ICRC2021), vol. 651, 2021), and 3D calorimeters (CALO) (Liu et al. in J Instrum 18(09):09002, 2023). To assess HERD's charge measurement capability during the beam test, a particle identification detector (PID) with a large dynamic range is required.MethodsA Si-PIN-based PID detector is conceptualized and manufactured. It is composed of four layers, each containing 30 Si-PIN sensors. In four IDE1160 ASICs, the signals from the Si-PIN arrays are preamplified, shaped, peak-held, and serially read out by four IDE1160 ASICs. A DAQ system is created to digitize the analog signals from ASICs, organize the data package, and transfer it to the host computer.Results and conclusionBefore going to the beam test, the dynamic range, linearity, pedestal, and noise level of each channel in PID were studied at home. The dynamic range is 0 to +5 pC, the linearity is better than 2%, and the RMSE (Root Mean Square Error) of the pedestal is about 1 fC. The preliminary beam test results show that PID is capable of detecting heavy ions from Z=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z=4$$\end{document} (Be) to Z=31\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z=31$$\end{document} (Ga), and the charge resolution is better than 0.3 charge units (c.u.).
引用
收藏
页码:1480 / 1485
页数:6
相关论文
共 50 条
  • [1] Influence of Beam Drift on Measurement with Silicon Strip Detector Array
    Sun H.
    Lin C.
    Ma N.
    Wang D.
    Jia H.
    Yang L.
    Yang F.
    Zhong F.
    Wen P.
    Yao Y.
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2020, 54 (07): : 1287 - 1293
  • [2] First in-beam test of the GALTRACE innovative silicon detector array
    Capra, S.
    Ziliani, S.
    Goasduff, A.
    Leoni, S.
    Fornal, B.
    Mengoni, D.
    Benzoni, G.
    Zanon, I.
    Compagnucci, A.
    Luciani, M.
    Skowronski, J.
    Brugnara, D.
    Cieplicka-Orynczak, N.
    Colucci, G.
    Cortes, M. L.
    Gosta, G.
    Gottardo, A.
    Hadynska-Klek, K. C.
    Pasqualato, G.
    Recchia, F.
    Siciliano, M.
    Dobon, J. J. Valiente
    Pullia, A.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2021, 44 (2-3):
  • [3] Beam test of a dual layer silicon charge detector (SCD) for the CREAM experiment
    Park, N. H.
    Ahn, H. S.
    Ganel, O.
    Han, J. H.
    Jeon, J. A.
    Kim, C. H.
    Kim, K. C.
    Lutz, L.
    Lee, M. H.
    Malinin, A.
    Nam, S.
    Park, I. H.
    Park, J. H.
    Seo, E. S.
    Walpole, P.
    Wu, J.
    Yang, J.
    Yoo, J. H.
    Yoon, Y. S.
    Zinn, S. Y.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 581 (1-2): : 133 - 135
  • [4] A novel charge reconstruction algorithm applied to the HERD prototype silicon charge detector
    Zhang, Wei-Shuai
    Qiao, Rui
    Lu, Ruo-Si
    Gong, Ke
    Guo, Dong-Ya
    Lu, Bing
    Hu, Peng
    Wu, Qi
    Liu, Xuan
    Zhang, Yi-Rong
    Wei, Jia-Ju
    Cui, Yu-Xin
    Hu, Yi-Ming
    Guo, Jian-Hua
    Wang, Jian
    Peng, Wen-Xi
    Lan, Xiao-Fei
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2024, 1064
  • [5] Beam test performance of a pixelated silicon array for the charge identification of cosmic rays
    Maestro, P.
    Bagliesi, M. G.
    Bigongiari, G.
    Bonechi, S.
    Kim, M. Y.
    Marrocchesi, P. S.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2012, 679 : 7 - 13
  • [6] n/? discrimination of SiPM array-based CLYC detector
    Wang, Chenger
    Sun, Xilei
    Yu, Jinqiu
    Lv, Junguang
    Deng, Yong
    Li, Junjie
    Jiang, Huan
    Luo, Liang
    Fan, Xiaoxue
    Gu, Fengbo
    Qi, Xiaohui
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1036
  • [7] Beam test of n-type Silicon pad array detector at PS CERN
    Sawan
    Bouly, J. L.
    Bourrion, O.
    Bregant, M.
    van den Brink, A.
    Chujo, T.
    Ghimouz, A.
    Inaba, M.
    Isidori, T.
    Kashyap, V. K. S.
    Krug, C.
    Kumar, L.
    Loizides, C.
    Minafra, N.
    Mohanty, B.
    Mondal, M. M.
    Novitzky, N.
    Ponchant, N.
    Rauch, M.
    Sharma, K. P.
    Singh, R.
    Tambave, G.
    Thienpont, D.
    Tourres, D.
    JOURNAL OF INSTRUMENTATION, 2024, 19 (09):
  • [8] Spectral Enhancement of a SiPM Array-Based Radiation Detector
    Harn, R.
    Osovizky, A.
    Kadmon, Y.
    Rotman, S.
    Kopeika, N.
    Ghelman, M.
    ANIMMA 2021 - ADVANCEMENTS IN NUCLEAR INSTRUMENTATION MEASUREMENT METHODS AND THEIR APPLICATIONS, 2021, 253
  • [9] Beam test results with the silicon pad detector
    Dulinski, W
    Gadomski, S
    Nygaard, E
    Roe, S
    Weilhammer, P
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 395 (03): : 410 - 415
  • [10] Beam test results with the silicon pad detector
    Dulinski, W.
    Gadomski, S.
    Nygaard, E.
    Roe, S.
    Weilhammer, P.
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 395 (03): : 410 - 415