An Augmented Two-Scale Finite Element Method for Eigenvalue Problems

被引:0
|
作者
Dai, Xiaoying [1 ,2 ]
Du, Yunyun [1 ,2 ]
Liu, Fang [3 ]
Zhou, Aihui [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-scale; Finite element; Augmented subspace method; Eigenvalue problem; Partial differential equation; GROUND-STATE SOLUTION; DIMENSIONAL APPROXIMATIONS; NUMERICAL-ANALYSIS; MULTIGRID METHOD; DISCRETIZATIONS; SCHEME;
D O I
10.1007/s42967-024-00375-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an augmented two-scale finite element method is proposed for a class of linear and nonlinear eigenvalue problems on tensor-product domains. Through a correction step, the augmented two-scale finite element solution is obtained by solving an eigenvalue problem on a low-dimensional augmented subspace. Theoretical analysis and numerical experiments show that the augmented two-scale finite element solution achieves the same order of accuracy as the standard finite element solution on a fine grid, but the computational cost required by the former solution is much lower than that demanded by the latter. The augmented two-scale finite element method also improves the approximation accuracy of eigenfunctions in the L2(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2(\varOmega )$$\end{document} norm compared with the two-scale finite element method.
引用
收藏
页码:663 / 688
页数:26
相关论文
共 50 条
  • [41] An adaptive finite element method with asymptotic saturation for eigenvalue problems
    C. Carstensen
    J. Gedicke
    V. Mehrmann
    A. Międlar
    Numerische Mathematik, 2014, 128 : 615 - 634
  • [42] A mixed finite element method for fourth order eigenvalue problems
    Nataraj, Neela
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 213 (01) : 60 - 72
  • [43] A new multigrid finite element method for the transmission eigenvalue problems
    Han, Jiayu
    Yang, Yidu
    Bi, Hai
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 96 - 106
  • [44] An iterative adaptive finite element method for elliptic eigenvalue problems
    Solin, Pavel
    Giani, Stefano
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (18) : 4582 - 4599
  • [45] Extension of the fixed grid finite element method to eigenvalue problems
    Maan, F. S.
    Querin, O. M.
    Barton, D. C.
    ADVANCES IN ENGINEERING SOFTWARE, 2007, 38 (8-9) : 607 - 617
  • [46] Generalized soft finite element method for elliptic eigenvalue problems
    Chen, Jipei
    Calo, Victor M.
    Deng, Quanling
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 184 : 168 - 184
  • [47] Enhancing finite element approximation for eigenvalue problems by projection method
    Liu, Huipo
    Yan, Ningning
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 233 : 81 - 91
  • [48] A multilevel finite element method for Fredholm integral eigenvalue problems
    Xie, Hehu
    Zhou, Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 : 173 - 184
  • [49] An adaptive finite element method with asymptotic saturation for eigenvalue problems
    Carstensen, C.
    Gedicke, J.
    Mehrmann, V.
    Miedlar, A.
    NUMERISCHE MATHEMATIK, 2014, 128 (04) : 615 - 634
  • [50] A two-scale generalized finite element approach for modeling localized thermoplasticity
    Plews, J. A.
    Duarte, C. A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 108 (10) : 1123 - 1158