An Augmented Two-Scale Finite Element Method for Eigenvalue Problems

被引:0
|
作者
Dai, Xiaoying [1 ,2 ]
Du, Yunyun [1 ,2 ]
Liu, Fang [3 ]
Zhou, Aihui [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-scale; Finite element; Augmented subspace method; Eigenvalue problem; Partial differential equation; GROUND-STATE SOLUTION; DIMENSIONAL APPROXIMATIONS; NUMERICAL-ANALYSIS; MULTIGRID METHOD; DISCRETIZATIONS; SCHEME;
D O I
10.1007/s42967-024-00375-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an augmented two-scale finite element method is proposed for a class of linear and nonlinear eigenvalue problems on tensor-product domains. Through a correction step, the augmented two-scale finite element solution is obtained by solving an eigenvalue problem on a low-dimensional augmented subspace. Theoretical analysis and numerical experiments show that the augmented two-scale finite element solution achieves the same order of accuracy as the standard finite element solution on a fine grid, but the computational cost required by the former solution is much lower than that demanded by the latter. The augmented two-scale finite element method also improves the approximation accuracy of eigenfunctions in the L2(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2(\varOmega )$$\end{document} norm compared with the two-scale finite element method.
引用
收藏
页码:663 / 688
页数:26
相关论文
共 50 条
  • [31] Quadrature finite element method for elliptic eigenvalue problems
    Solov’ev S.I.
    Lobachevskii Journal of Mathematics, 2017, 38 (5) : 856 - 863
  • [32] Two-scale finite element discretizations for partial differential equations
    Liu, Fang
    Zhou, Aihui
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (03) : 373 - 392
  • [33] TWO-SCALE FINITE ELEMENT APPROXIMATION OF A HOMOGENIZED PLATE MODEL
    Rumpf, Martin
    Simon, Stefan
    Smoch, Christoph
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (05) : 2121 - 2142
  • [34] POSTPROCESSED TWO-SCALE FINITE ELEMENT DISCRETIZATIONS, PART I
    Liu, Fang
    Stynes, Martin
    Zhou, Aihui
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) : 1947 - 1971
  • [35] A two-scale scheme for finite horizon switching problems with delays
    Perninge, Magnus
    AUTOMATICA, 2020, 112
  • [36] A two-scale failure model for heterogeneous materials: numerical implementation based on the finite element method
    Toro, S.
    Sanchez, P. J.
    Huespe, A. E.
    Giusti, S. M.
    Blanco, P. J.
    Feijoo, R. A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 97 (05) : 313 - 351
  • [37] A two-scale generalized finite element method for parallel simulations of spot welds in large structures
    Li, H.
    Duarte, C. A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 337 : 28 - 65
  • [38] The Method of Rothe and Two-Scale Convergence in Nonlinear Problems
    Jiří Vala
    Applications of Mathematics, 2003, 48 (6) : 587 - 606
  • [39] Two-scale finite element analyses for bendability and springback evaluation based on crystallographic homogenization method
    Nakamachi, Eiji
    Honda, Takeshi
    Kuramae, Hiroyuki
    Morita, Yusuke
    Ohata, Tomiso
    Morimoto, Hideo
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2014, 80 : 109 - 121
  • [40] Two-scale Modeling of Composites damage with Voronoi cell finite element method for microscale computation
    Gai, Wenhai
    Zhang, Rui
    Guo, Ran
    COMPOSITE STRUCTURES, 2022, 291