Deep learning in quasar physics

被引:0
|
作者
Nia, F. Rastegar [1 ,2 ,3 ,4 ]
Mirtorabi, M. T. [1 ]
Moradi, R. [4 ,5 ,6 ]
Wang, Y. [4 ,5 ,6 ]
Sadr, A. Vafaei [7 ,8 ]
机构
[1] Alzahra Univ Vanak, Phys Dept, Tehran 1993891176, Iran
[2] Univ Roma La Sapienza, ICRA, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[3] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] ICRANet, Piazza Repubbl 10, I-65122 Pescara, Italy
[5] Sapienza Univ Roma, ICRA, Dipartimento Fis, I-00185 Rome, Italy
[6] INAF, I-00136 Rome, Italy
[7] Univ Geneva, Dept Phys Theor, Geneva, Switzerland
[8] Univ Geneva, Ctr Astroparticle Phys, Geneva, Switzerland
关键词
Quasar; Deep learning; CNN; SDSS; PHOTOMETRIC REDSHIFTS; STELLAR SPECTRA; NEURAL-NETWORKS; GALAXIES; CLASSIFICATION;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In view of increasing data volume of existing and upcoming telescopes/detectors we here apply the 1-dimensional convolutional neural network (CNN) to estimate the redshift of (high-)redshifts quasars in Sloan Digital Sky Survey IV (SDSS-IV) quasar catalog from DR16 of eBOSS. Our CNN takes the flux of the quasars as an array and their redshift as labels. We here evidence that new structure of the network, and augmenting the training set, provide a high precision result in estimating the redshift of quasars.
引用
收藏
页码:382 / 390
页数:9
相关论文
共 50 条
  • [41] Physics-embedded deep learning for intensity diffraction tomography
    Matlock, Alex
    Tian, Lei
    2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,
  • [42] An introduction to deep learning in medical physics: advantages, potential, and challenges
    Shen, Chenyang
    Nguyen, Dan
    Zhou, Zhiguo
    Jiang, Steve B.
    Dong, Bin
    Jia, Xun
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (05):
  • [43] Emergent physics-informed design of deep learning for microscopy
    Wijesinghe, Philip
    Dholakia, Kishan
    JOURNAL OF PHYSICS-PHOTONICS, 2021, 3 (02):
  • [44] Using deep learning to learn physics of conduction heat transfer
    Mohammad Edalatifar
    Mohammad Bagher Tavakoli
    Mohammad Ghalambaz
    Farbod Setoudeh
    Journal of Thermal Analysis and Calorimetry, 2021, 146 : 1435 - 1452
  • [45] Transferability of deep learning models in searches for new physics at colliders
    Romao, M. Crispim
    Castro, N. F.
    Pedro, R.
    Vale, T.
    PHYSICAL REVIEW D, 2020, 101 (03)
  • [46] A Physics-Driven Deep Learning Network for Subsurface Inversion
    Jin, Yuchen
    Wu, Xuqing
    Chen, Jiefu
    Huang, Yueqin
    2019 UNITED STATES NATIONAL COMMITTEE OF URSI NATIONAL RADIO SCIENCE MEETING (USNC-URSI NRSM), 2019,
  • [47] Knowledge sharing on deep learning in physics research using VISPA
    Beer, Max
    Eich, Niclas
    Erdmann, Martin
    Fackeldey, Peter
    Fischer, Benjamin
    Hafner, Katharina
    Noll, Dennis Daniel Nick
    Rath, Yannik Alexander
    Rieger, Marcel
    Temme, Alexander
    Vieweg, Max
    Urban, Martin
    24TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2019), 2020, 245
  • [48] Physics-informed deep learning for fringe pattern analysis
    Yin, Wei
    Che, Yuxuan
    Li, Xinsheng
    Li, Mingyu
    Hu, Yan
    Feng, Shijie
    Lam, Edmund Y.
    Chen, Qian
    Zuo, Chao
    OPTO-ELECTRONIC ADVANCES, 2024, 7 (01)
  • [49] Physics Informed Deep Reinforcement Learning for Aircraft Conflict Resolution
    Zhao, Peng
    Liu, Yongming
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 8288 - 8301
  • [50] Promoting vicarious learning of physics using deep questions with explanations
    Craig, Scotty D.
    Gholson, Barry
    Brittingham, Joshua K.
    Williams, Joah L.
    Shubeck, Keith T.
    COMPUTERS & EDUCATION, 2012, 58 (04) : 1042 - 1048