Deep learning in quasar physics

被引:0
|
作者
Nia, F. Rastegar [1 ,2 ,3 ,4 ]
Mirtorabi, M. T. [1 ]
Moradi, R. [4 ,5 ,6 ]
Wang, Y. [4 ,5 ,6 ]
Sadr, A. Vafaei [7 ,8 ]
机构
[1] Alzahra Univ Vanak, Phys Dept, Tehran 1993891176, Iran
[2] Univ Roma La Sapienza, ICRA, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[3] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] ICRANet, Piazza Repubbl 10, I-65122 Pescara, Italy
[5] Sapienza Univ Roma, ICRA, Dipartimento Fis, I-00185 Rome, Italy
[6] INAF, I-00136 Rome, Italy
[7] Univ Geneva, Dept Phys Theor, Geneva, Switzerland
[8] Univ Geneva, Ctr Astroparticle Phys, Geneva, Switzerland
来源
SIXTEENTH MARCEL GROSSMANN MEETING | 2023年
关键词
Quasar; Deep learning; CNN; SDSS; PHOTOMETRIC REDSHIFTS; STELLAR SPECTRA; NEURAL-NETWORKS; GALAXIES; CLASSIFICATION;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In view of increasing data volume of existing and upcoming telescopes/detectors we here apply the 1-dimensional convolutional neural network (CNN) to estimate the redshift of (high-)redshifts quasars in Sloan Digital Sky Survey IV (SDSS-IV) quasar catalog from DR16 of eBOSS. Our CNN takes the flux of the quasars as an array and their redshift as labels. We here evidence that new structure of the network, and augmenting the training set, provide a high precision result in estimating the redshift of quasars.
引用
收藏
页码:382 / 390
页数:9
相关论文
共 50 条
  • [31] Physics Informed Deep Learning for Traffic State Estimation
    Huang, Jiheng
    Agarwal, Shaurya
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [32] Physics-informed deep learning for digital materials
    Zhang, Zhizhou
    Gu, Grace X.
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2021, 11 (01)
  • [33] DEEP LEARNING WITH ULTRASOUND PHYSICS FOR FETAL SKULL SEGMENTATION
    Cerrolaza, Juan J.
    Sinclair, Matthew
    Li, Yuanwei
    Gomez, Alberto
    Ferrante, Enzo
    Matthew, Jaqueline
    Gupta, Chandni
    Knight, Caroline L.
    Rueckert, Daniel
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 564 - 567
  • [34] Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
    Raissi, Maziar
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19
  • [35] The Quasar Luminosity Function at z ∼ 5 via Deep Learning and Bayesian Information Criterion
    Shin, Suhyun
    Im, Myungshin
    Kim, Yongjung
    ASTROPHYSICAL JOURNAL, 2022, 937 (01):
  • [36] Intuitive physics learning in a deep-learning model inspired by developmental psychology
    Piloto, Luis S.
    Weinstein, Ari
    Battaglia, Peter
    Botvinick, Matthew
    NATURE HUMAN BEHAVIOUR, 2022, 6 (09) : 1257 - +
  • [37] Intuitive physics learning in a deep-learning model inspired by developmental psychology
    Luis S. Piloto
    Ari Weinstein
    Peter Battaglia
    Matthew Botvinick
    Nature Human Behaviour, 2022, 6 : 1257 - 1267
  • [38] Quasar candidates in the Hubble Deep Field
    Conti, A
    Kennefick, JD
    Martini, P
    Osmer, PS
    ASTRONOMICAL JOURNAL, 1999, 117 (02): : 645 - 657
  • [39] THE COMPLETENESS OF THE BRACCESI DEEP QUASAR SURVEY
    CRISTIANI, S
    VERONCETTY, MP
    VERON, P
    ASTRONOMY & ASTROPHYSICS, 1984, 135 (01): : 122 - 128
  • [40] The SDSS quasar survey(s): Probing the physics of quasars
    Richards, GT
    Hall, PB
    Strauss, MA
    Vanden Berk, DE
    Schneider, DP
    Reichard, TA
    MULTIWAVELENGTH AGN SURVEYS, 2004, : 47 - 52