Deep learning in quasar physics

被引:0
|
作者
Nia, F. Rastegar [1 ,2 ,3 ,4 ]
Mirtorabi, M. T. [1 ]
Moradi, R. [4 ,5 ,6 ]
Wang, Y. [4 ,5 ,6 ]
Sadr, A. Vafaei [7 ,8 ]
机构
[1] Alzahra Univ Vanak, Phys Dept, Tehran 1993891176, Iran
[2] Univ Roma La Sapienza, ICRA, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[3] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] ICRANet, Piazza Repubbl 10, I-65122 Pescara, Italy
[5] Sapienza Univ Roma, ICRA, Dipartimento Fis, I-00185 Rome, Italy
[6] INAF, I-00136 Rome, Italy
[7] Univ Geneva, Dept Phys Theor, Geneva, Switzerland
[8] Univ Geneva, Ctr Astroparticle Phys, Geneva, Switzerland
来源
SIXTEENTH MARCEL GROSSMANN MEETING | 2023年
关键词
Quasar; Deep learning; CNN; SDSS; PHOTOMETRIC REDSHIFTS; STELLAR SPECTRA; NEURAL-NETWORKS; GALAXIES; CLASSIFICATION;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In view of increasing data volume of existing and upcoming telescopes/detectors we here apply the 1-dimensional convolutional neural network (CNN) to estimate the redshift of (high-)redshifts quasars in Sloan Digital Sky Survey IV (SDSS-IV) quasar catalog from DR16 of eBOSS. Our CNN takes the flux of the quasars as an array and their redshift as labels. We here evidence that new structure of the network, and augmenting the training set, provide a high precision result in estimating the redshift of quasars.
引用
收藏
页码:382 / 390
页数:9
相关论文
共 50 条
  • [21] A SYNOPSIS OF MACHINE AND DEEP LEARNING IN MEDICAL PHYSICS AND RADIOLOGY
    Emam, Zohal Alnour Ahmed
    Ada, Emel
    JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES, 2022, 6 (03): : 946 - 957
  • [22] The role of machine and deep learning in modern medical physics
    El Naqa, Issam
    Das, Shiva
    MEDICAL PHYSICS, 2020, 47 (05) : E125 - E126
  • [23] Physics-Constrained Deep Learning of Geomechanical Logs
    Chen, Yuntian
    Zhang, Dongxiao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5932 - 5943
  • [24] Deep Learning with Periodic Features and Applications in Particle Physics
    Maeland, Steffen
    Strumke, Inga
    STATISTICS AND DATA SCIENCE, RSSDS 2019, 2019, 1150 : 140 - 147
  • [25] Physics-informed deep learning for digital materials
    Zhizhou Zhang
    Grace X Gu
    Theoretical & Applied Mechanics Letters, 2021, 11 (01) : 52 - 57
  • [26] Physics-Based Deep Learning for Flow Problems
    Sun, Yubiao
    Sun, Qiankun
    Qin, Kan
    ENERGIES, 2021, 14 (22)
  • [27] Applications of deep learning in high energy nuclear physics
    Wang LingXiao
    Pang LongGang
    Zhou Kai
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2022, 52 (05)
  • [28] Geometric Deep Learning Unlocks the Underlying Physics of Nanostructures
    Kiarashinejad, Yashar
    Zandehshahvar, Mohammadreza
    Abdollahramezani, Sajjad
    Hemmatyar, Omid
    Pourabolghasem, Reza
    Adibi, Ali
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [29] Nonparametric Boundary Geometry in Physics Informed Deep Learning
    Cameron, Scott
    Pretorius, Arnu
    Roberts, Stephen
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [30] Shared Data and Algorithms for Deep Learning in Fundamental Physics
    Benato L.
    Buhmann E.
    Erdmann M.
    Fackeldey P.
    Glombitza J.
    Hartmann N.
    Kasieczka G.
    Korcari W.
    Kuhr T.
    Steinheimer J.
    Stöcker H.
    Plehn T.
    Zhou K.
    Computing and Software for Big Science, 2022, 6 (1)