Deep learning in quasar physics

被引:0
|
作者
Nia, F. Rastegar [1 ,2 ,3 ,4 ]
Mirtorabi, M. T. [1 ]
Moradi, R. [4 ,5 ,6 ]
Wang, Y. [4 ,5 ,6 ]
Sadr, A. Vafaei [7 ,8 ]
机构
[1] Alzahra Univ Vanak, Phys Dept, Tehran 1993891176, Iran
[2] Univ Roma La Sapienza, ICRA, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[3] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] ICRANet, Piazza Repubbl 10, I-65122 Pescara, Italy
[5] Sapienza Univ Roma, ICRA, Dipartimento Fis, I-00185 Rome, Italy
[6] INAF, I-00136 Rome, Italy
[7] Univ Geneva, Dept Phys Theor, Geneva, Switzerland
[8] Univ Geneva, Ctr Astroparticle Phys, Geneva, Switzerland
关键词
Quasar; Deep learning; CNN; SDSS; PHOTOMETRIC REDSHIFTS; STELLAR SPECTRA; NEURAL-NETWORKS; GALAXIES; CLASSIFICATION;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In view of increasing data volume of existing and upcoming telescopes/detectors we here apply the 1-dimensional convolutional neural network (CNN) to estimate the redshift of (high-)redshifts quasars in Sloan Digital Sky Survey IV (SDSS-IV) quasar catalog from DR16 of eBOSS. Our CNN takes the flux of the quasars as an array and their redshift as labels. We here evidence that new structure of the network, and augmenting the training set, provide a high precision result in estimating the redshift of quasars.
引用
收藏
页码:382 / 390
页数:9
相关论文
共 50 条
  • [1] DEEP LEARNING IN PHYSICS
    Lewis, R. A.
    AMERICAN JOURNAL OF PHYSICS, 2017, 85 (09) : 648 - 648
  • [2] Deep Learning of Quasar Lightcurves in the LSST Era
    Kovacevic, Andjelka B.
    Ilic, Dragana
    Popovic, Luka C.
    Mitrovic, Nikola Andric
    Nikolic, Mladen
    Pavlovic, Marina S.
    Cvorovic-Hajdinjak, Iva
    Knezevic, Miljan
    Savic, Djordje V.
    UNIVERSE, 2023, 9 (06)
  • [3] A deep learning approach to quasar continuum prediction
    Liu, Bin
    Bordoloi, Rongmon
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 502 (03) : 3510 - 3532
  • [4] Physics Informed Deep Kernel Learning
    Wang, Zheng
    Xing, Wei
    Kirby, Robert M.
    Zhe, Shandian
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [5] Quasar photometric redshifts from incomplete data using deep learning
    Curran, S. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 512 (02) : 2099 - 2109
  • [6] Deep learning of quasar spectra to discover and characterize damped Lyα systems
    Parks, David
    Prochaska, J. Xavier
    Dong, Shawfeng
    Cai, Zheng
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 476 (01) : 1151 - 1168
  • [7] Deep Physics Corrector: A physics enhanced deep learning architecture for solving stochastic differential equations
    Tushar
    Chakraborty, Souvik
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 479
  • [8] Deep Learning based Algorithms in Astroparticle Physics
    Erdmann, Martin
    Glombitza, Jonas
    19TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2020, 1525
  • [9] Coupled physics-deep learning inversion
    Colombo, Daniele
    Turkoglu, Ersan
    Li, Weichang
    Rovetta, Diego
    COMPUTERS & GEOSCIENCES, 2021, 157
  • [10] Machine and deep learning applications in particle physics
    Bourilkov, Dimitri
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (35):